【題目】設(shè)函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)時恒成立,求實數(shù)的取值范圍;

(3)若函數(shù),求證:函數(shù)的極大值小于1.

【答案】(1)見解析;(2)(3)見證明

【解析】

1)先對函數(shù)求導(dǎo),分別討論,即可得出結(jié)果;

2)先將函數(shù)時恒成立,轉(zhuǎn)化為上恒成立,再設(shè),,利用導(dǎo)數(shù)方法求出的最大值,即可得出結(jié)果;

3)先由題意得到,對求導(dǎo),利用導(dǎo)數(shù)的方法研究其單調(diào)性,即可求出其極大值,得出結(jié)論.

解:(1)由于,,

當(dāng)時,,上單調(diào)遞減;

當(dāng)時,由,由

所以上單調(diào)遞減,上單調(diào)遞增.

(2)若上恒成立,

只需.

,,則,

,所以

,的變化情況如下:

1

+

0

-

極大值

所以,所以.

(3)由題知,

,

則函數(shù)上單調(diào)遞減,,,

所以存在唯一的

當(dāng)時,;當(dāng)時,.

所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,

其中,所以函數(shù)有極大值.

函數(shù)的極大值是,由,得,

所以,因為,所以,即,

所以的極大值小于1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)調(diào)查顯示,某高校萬男生的身高服從正態(tài)分布,現(xiàn)從該校男生中隨機抽取名進(jìn)行身高測量,將測量結(jié)果分成組: , , 并繪制成如圖所示的頻率分布直方圖.

(Ⅰ)求這名男生中身高在(含)以上的人數(shù);

(Ⅱ)從這名男生中身高在以上(含)的人中任意抽取人,該人中身高排名(從高到低)在全校前名的人數(shù)記為,求的數(shù)學(xué)期望.

(附:參考數(shù)據(jù):若服從正態(tài)分布,則, .)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量=(sinx,cosx),=(sin(x﹣),sinx),函數(shù)f(x)=2,g(x)=f().

(1)求f(x)在[,π]上的最值,并求出相應(yīng)的x的值;

(2)計算g(1)+g(2)+g(3)++g(2014)的值;

(3)已知tR,討論g(x)在[t,t+2]上零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費每超過元(含元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.方案一:從裝有個形狀、大小完全相同的小球(其中紅球個,黑球個)的抽獎盒中,一次性摸出個球,其中獎規(guī)則為:若摸到個紅球,享受免單優(yōu)惠;若摸出個紅球則打折,若摸出個紅球,則打折;若沒摸出紅球,則不打折.方案二:從裝有個形狀、大小完全相同的小球(其中紅球個,黑球個)的抽獎盒中,有放回每次摸取球,連摸次,每摸到次紅球,立減.

1)若兩個顧客均分別消費了元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;

2)若某顧客消費恰好滿元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線與拋物線交于,兩點,與橢圓交于兩點,直線,為坐標(biāo)原點)的斜率分別為,,,,若.

(1)是否存在實數(shù),滿足,并說明理由;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務(wù)平臺對某市的網(wǎng)民在今年“雙十一”的網(wǎng)購情況進(jìn)行摸底調(diào)查,用隨機抽樣的方法抽取了100人,其消費金額 (百元)的頻率分布直方圖如圖所示:

(1)求網(wǎng)民消費金額的平均值和中位數(shù);

(2)把下表中空格里的數(shù)填上,能否有的把握認(rèn)為網(wǎng)購消費與性別有關(guān);

合計

30

合計

45

附表:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù)a,b,c滿足a+b+c0a2+b2+c2,求a4+b4+c4的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古代數(shù)學(xué)名著《九章算術(shù)》中的“盈不足”問題知兩鼠穿垣.今有垣厚5尺,兩鼠對穿.大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半.問:何日相逢?題意是:由垛厚五尺(舊制長度單位, 尺= 寸)的墻壁,大小兩只老鼠同時從墻的兩面,沿一直線相對打洞.大鼠第一天打進(jìn)尺,以后每天的速度為前一天的倍;小鼠第一天也打進(jìn)尺,以后每天的進(jìn)度是前一天的一半.它們多久可以相遇?

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:

0

0

2

0

0

(1)請將上表數(shù)據(jù)補充完整,填寫在相應(yīng)位置,并求出函數(shù)的解析式;

(2)把的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.

查看答案和解析>>

同步練習(xí)冊答案