5.關(guān)于x,y的不等式組$\left\{\begin{array}{l}x+y-3≥0\\ x-2y+3≥0\\ x-2≤0\end{array}\right.$,表示的區(qū)域?yàn)镈,若區(qū)域D內(nèi)存在滿足t≤3x-y的點(diǎn),則實(shí)數(shù)t的取值范圍為(  )
A.(-∞,1]B.[1,+∞)C.(-∞,5]D.[5,+∞)

分析 首先畫出可行域,利用z=3x-y的幾何意義求出z 的最大值,根據(jù)區(qū)域D內(nèi)存在滿足t≤3x-y的點(diǎn),只要t≤(3x-y)max即可.

解答 解:由已知得到平面區(qū)域如圖:區(qū)域D內(nèi)存在滿足t≤3x-y的點(diǎn),即區(qū)域D內(nèi)存在滿足t≤(3x-y)max
由題意,當(dāng)直線y=3x-z經(jīng)過圖中A(2,1)時(shí),使得3x-y最大,最大為2×3-1=5,
所以t≤5;
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是簡單線性規(guī)劃的應(yīng)用.我們?cè)诮鉀Q線性規(guī)劃的小題時(shí),我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個(gè)角點(diǎn)的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗(yàn)證,求出最優(yōu)解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x-a|
(I) 若對(duì)x∈[0,4]不等式f(x)≤3恒成立,求實(shí)數(shù)a的取值范圍;
(II) 當(dāng)a=2時(shí),若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知拋物線C:y2=2px(p>0)的焦點(diǎn)F,準(zhǔn)線l,點(diǎn)A為C上一點(diǎn),以F為圓心,F(xiàn)A為半徑作圓交l于B、D兩點(diǎn),∠BFD=120°,△ABD的面積為4$\sqrt{3}$,則p的值為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x-alnx,a∈R.
(Ⅰ)研究函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1、x2,且x1<x2
(1)求a的取值范圍;               
(2)求證:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知i是虛數(shù)單位,若z(1+i)=1+3i,則$\overline z$=( 。
A.2-iB.2+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖△ABC和△ABD均為等腰直角三角形,AD⊥BD,AC⊥BC,平面ABC⊥平面ABD,EC⊥平面ABC,EC=1,$AD=2\sqrt{2}$.
(1)證明:DE⊥AB;
(2)求二面角D-BE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知向量$\overrightarrow a$與$\overrightarrow b$滿足$|{\overrightarrow a}|=2|{\overrightarrow b}|$,若向量$\overrightarrow c=\overrightarrow a+\overrightarrow b$,且$\overrightarrow c⊥\overrightarrow b$,則$\overrightarrow a$與$\overrightarrow b$的夾角為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知四棱錐的正視圖與俯視圖如圖所示,該四棱錐的體積為24,則四棱錐的側(cè)視圖面積為6,四棱錐的表面積為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(bmodm),例如10≡4(bmod6),如圖程序框圖的算法源于我國古代《孫子算經(jīng)》中的“孫子定理”的某一環(huán)節(jié),執(zhí)行該框圖,輸入a=2,b=3,c=5,則輸出的N=(  )
A.6B.9C.12D.21

查看答案和解析>>

同步練習(xí)冊(cè)答案