【題目】已知函數.
討論函數的單調性;
設函數的最小值為,且關于的方程恰有兩個不同的根,求實數的取值集合.
科目:高中數學 來源: 題型:
【題目】某廠準備生產甲、乙兩種適銷產品,每件銷售收入分別為3千元,2千元.甲、乙產品都需要在A,B兩種設備上加工,在每臺A,B上加工一件甲產品所需工時分別為1小時、2小時,加工一件乙產品所需工時分別為2小時、1小時,A、B兩種設備每月有效使用臺時數分別為400小時和500小時.如何安排生產可使月收入最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別為△ABC三個內角A,B,C的對邊,acosC+ asinC﹣b﹣c=0.
(1)求角A;
(2)若a=2,△ABC的面積為 ,求b,c.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,點P是平面A1BC1內一動點,且滿足|PD|+|PB1|=6,則點P的軌跡所形成的圖形的面積是( )
A.2π
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:(x﹣3)2+(y﹣4)2=4
(1)若平面上有兩點A(1,0),B(﹣1,0),點P是圓C上的動點,求使|AP|2+|BP|2取得最小值時點P的坐標;
(2)若Q是x軸上的動點,QM,QN分別切圓C于M,N兩點,①若 ,求直線QC的方程;②求證:直線MN恒過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某科研小組研究發(fā)現:一棵水果樹的產量(單位:百千克)與肥料費用(單位:百元)滿足如下關系: .此外,還需要投入其它成本(如施肥的人工費等)百元.已知這種水果的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應求.記該棵水果樹獲得的利潤為(單位:百元).
(1)求的函數關系式;
當投入的肥料費用為多少時,該水果樹獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P(t,t),點M是圓O1:x2+(y﹣1)2= 上的動點,點N是圓O2:(x﹣2)2+y2= 上的動點,則|PN|﹣|PM|的最大值是( )
A.1
B. ﹣2
C.2+
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線l的方程為y=kx+b(其中k的值與b無關),圓M的方程為x2+y2﹣2x﹣4=0.
(1)如果不論k取何值,直線l與圓M總有兩個不同的交點,求b的取值范圍;
(2)b=1,l與圓交于A,B兩點,求|AB|的最大值和最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com