【題目】如圖,在四棱錐中,PA⊥平面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).證明:
(1)CD⊥AE;
(2)PD⊥平面ABE.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)關(guān)鍵證明CD⊥平面PAC,(2)關(guān)鍵證明AE⊥PD,AB⊥PD。
證明:(1)在四棱錐中,
∵PA⊥平面ABCD,CD平面ABCD,
∴PA⊥CD.∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC.
而AE平面PAC,∴CD⊥AE.
(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.
∵E是PC的中點(diǎn),∴AE⊥PC.
由(1)知AE⊥CD,且PC∩CD=C,
∴AE⊥平面PCD.
而PD平面PCD,∴AE⊥PD.
∵PA⊥平面ABCD,∴PA⊥AB.
又∵AB⊥AD且PA∩AD=A,
∴AB⊥平面PAD,而PD平面PAD,
∴AB⊥PD.
又∵AB∩AE=A,
∴PD⊥平面ABE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市為調(diào)查會員某年度上半年的消費(fèi)情況制作了有獎?wù){(diào)查問卷發(fā)放給所有會員,并從參與調(diào)查的會員中隨機(jī)抽取名了解情況并給予物質(zhì)獎勵.調(diào)查發(fā)現(xiàn)抽取的名會員消費(fèi)金額(單位:萬元)都在區(qū)間內(nèi),調(diào)查結(jié)果按消費(fèi)金額分成組,制作成如下的頻率分布直方圖.
(1)求該名會員上半年消費(fèi)金額的平均值與中位數(shù);(以各區(qū)間的中點(diǎn)值代表該區(qū)間的均值)
(2)現(xiàn)采用分層抽樣的方式從前組中選取人進(jìn)行消費(fèi)愛好調(diào)查,然后再從前組選取的人中隨機(jī)選人,求這人都來自第組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年開始,我省將試行“3+1+2“的普通高考新模式,即除語文、數(shù)學(xué)、外語3門必選科目外,考生再從物理、歷史中選1門,從化學(xué)、生物、地理、政治中選2門作為選考科目.為了幫助學(xué)生合理選科,某中學(xué)將高一每個學(xué)生的六門科目綜合成績按比例均縮放成5分制,繪制成雷達(dá)圖.甲同學(xué)的成績雷達(dá)圖如圖所示,下面敘述一定不正確的是( 。
A.甲的物理成績領(lǐng)先年級平均分最多
B.甲有2個科目的成績低于年級平均分
C.甲的成績從高到低的前3個科目依次是地理、化學(xué)、歷史
D.對甲而言,物理、化學(xué)、地理是比較理想的一種選科結(jié)果
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng),且是上的增函數(shù),求實數(shù)的取值范圍;
(2)當(dāng),且對任意實數(shù),關(guān)于的方程總有三個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為。
(1)求橢圓的方程;
(2)求的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過,直線與橢圓交于,兩點(diǎn)(,兩點(diǎn)不是左右頂點(diǎn)),若直線的斜率為時,弦的中點(diǎn)在直線上.
(Ⅰ)求橢圓的方程.
(Ⅱ)若以,兩點(diǎn)為直徑的圓過橢圓的右頂點(diǎn),則直線是否經(jīng)過定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com