3.已知O為△ABC內(nèi)一點(diǎn),且$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{OB}+\overrightarrow{OC})$,$\overrightarrow{AD}=t\overrightarrow{AC}$,若B,O,D三點(diǎn)共線,則t的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 以O(shè)B,OC為鄰邊作平行四邊形OBFC,連接OF與 BC相交于點(diǎn)E,E為BC的中點(diǎn).由$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{OB}+\overrightarrow{OC})$,可得$\overrightarrow{OB}+\overrightarrow{OC}$=2$\overrightarrow{AO}$=2$\overrightarrow{OE}$,點(diǎn)O是直線AE的中點(diǎn).根據(jù)$\overrightarrow{AD}=t\overrightarrow{AC}$,B,O,D三點(diǎn)共線,可得點(diǎn)D是BO與AC的交點(diǎn).過(guò)點(diǎn)O作OM∥BC交AC于點(diǎn)M,則點(diǎn)M為AC的中點(diǎn).即可得出.

解答 解:以O(shè)B,OC為鄰邊作平行四邊形OBFC,連接OF與 BC相交于點(diǎn)E,E為BC的中點(diǎn).
∵$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{OB}+\overrightarrow{OC})$,∴$\overrightarrow{OB}+\overrightarrow{OC}$=2$\overrightarrow{AO}$=2$\overrightarrow{OE}$,
∴點(diǎn)O是直線AE的中點(diǎn).
∵$\overrightarrow{AD}=t\overrightarrow{AC}$,B,O,D三點(diǎn)共線,
∴點(diǎn)D是BO與AC的交點(diǎn).
過(guò)點(diǎn)O作OM∥BC交AC于點(diǎn)M,則點(diǎn)M為AC的中點(diǎn).
則OM=$\frac{1}{2}$EC=$\frac{1}{4}$BC,$\frac{DM}{DC}$=$\frac{1}{4}$,
∴DM=$\frac{1}{3}$MC,
∴AD=$\frac{2}{3}$AM=$\frac{1}{3}$AC,
∴t=$\frac{1}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了向量共線定理、向量三角形與平行四邊形法則、平行線的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={1,2,3},B={y|y=x-2,x∈A},則A∩B=( 。
A.{1}B.{4}C.{1,3}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,則下列結(jié)論正確的是( 。
A.a>0,c<0,d>0B.a>0,c>0,d<0C.a<0,c<0,d<0D.a<0,c>0,d<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知非零常數(shù)α是函數(shù)y=x+tanx的一個(gè)零點(diǎn),則(α2+1)(1+cos2α)的值為( 。
A.2B.$2+\sqrt{2}$C.$2+\sqrt{3}$D.$2-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,已知圓C:x2+y2=4和動(dòng)直線l:x=my+1.
(1)證明:不論m為何值時(shí),直線l與圓C都相交;
(2)若直線l與圓C相交于A,B,點(diǎn)A關(guān)于軸x的對(duì)稱點(diǎn)為A1,試探究直線A1B與x軸是否交于一個(gè)定點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在${(1-x+\frac{1}{{{x^{2017}}}})^{10}}$的展開(kāi)式中,含x2項(xiàng)的系數(shù)為45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)實(shí)數(shù)a,b滿足a+2b=9.
(1)若|9-2b|+|a+1|<3,求a的取值范圍;
(2)若a,b>0,且z=ab2,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,已知四邊形ABCD和ABEG均為平行四邊形,點(diǎn)E在平面ABCD內(nèi)的射影恰好為點(diǎn)A,以BD為直徑的圓經(jīng)過(guò)點(diǎn)A,C,AG的中點(diǎn)為F,CD的中點(diǎn)為P,且AD=AB=AE=2.
(1)求證:平面EFP⊥平面BCE;
(2)求幾何體ADG-BCE,P-EF-B的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,則f(f($\frac{1}{4}$))=(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案