年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省成都市石室中學(xué)2006-2007學(xué)年度高三年級(jí)第二次月考 數(shù)學(xué)試題 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求y=f(x)的表達(dá)式;?
(2)若任意實(shí)數(shù)x都滿足等式f(x)·g(x)+anx+bn=xn+1,(g(x)為多項(xiàng)式,n∈N),試用t表示an和bn;?
(3)設(shè)圓Cn的方程是(x-an)2+(y-bn)2=rn2,圓Cn與Cn+1外切(n=1,2,3,…),{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn為前n個(gè)圓的面積之和,求rn,Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=-x3+3x2+9x+a.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.
思路 本題考查多項(xiàng)式的導(dǎo)數(shù)公式及運(yùn)用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和函數(shù)的最值,題目中需注意應(yīng)先比較f(2)和f(-2)的大小,然后判定哪個(gè)是最大值從而求出a.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com