【題目】給出下列命題,其中錯誤命題的個數(shù)為( )

(1)直線與平面不平行,則與平面內的所有直線都不平行;

(2)直線與平面不垂直,則與平面內的所有直線都不垂直;

(3)異面直線、不垂直,則過的任何平面與都不垂直;

(4)若直線共面,直線共面,則共面

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

分別利用空間點線面位置關系的公理和定理對四個命題逐一判斷其是否為錯誤命題,由此得出正確的選項.

對于(1),若直線在平面內,這時直線和平面不平行,但是平面內有直線和是平行的,故(1)錯誤.對于(2), 若直線在平面內,這時直線和平面不垂直,但是平面內有直線和是垂直的,故(2)錯誤.對于(3),根據(jù)線面垂直的定義可知,(3)是正確的.對于(4),有可能是異面直線,故(4)錯誤.終上所述,有個命題是錯誤命題,故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】平面四邊形中, , 為等邊三角形,現(xiàn)將沿翻折得到四面體,點分別為的中點.

(Ⅰ)求證:四邊形為矩形;

(Ⅱ)當平面平面時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交通安全法有規(guī)定:機動車行經(jīng)人行橫道時,應當減速行駛;遇行人正在通過人行橫道,應當停車讓行.機動車行經(jīng)沒有交通信號的道路時,遇行人橫過馬路,應當避讓.我們將符合這條規(guī)定的稱為“禮讓斑馬線”,不符合這條規(guī)定的稱為“不禮讓斑馬線”.下表是六安市某十字路口監(jiān)控設備所抓拍的5個月內駕駛員“不禮讓斑馬線”行為的統(tǒng)計數(shù)據(jù):

月份

1

2

3

4

5

“不禮讓斑馬線”的駕駛員人數(shù)

120

105

100

85

90

1)根據(jù)表中所給的5個月的數(shù)據(jù),可用線性回歸模型擬合的關系,請用相關系數(shù)加以說明;

2)求“不禮讓斑馬線”的駕駛員人數(shù)關于月份之間的線性回歸方程;

3)若從4,5月份“不禮讓斑馬線”的駕駛員中分別選取4人和2人,再從所選取的6人中任意抽取2人進行交規(guī)調查,求抽取的2人分別來自兩個月份的概率;

參考公式:線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面四個命題:

在定義域上單調遞增;

②若銳角,滿足,則;

是定義在上的偶函數(shù),且在上是增函數(shù),若,則;

④函數(shù)的一個對稱中心是

其中真命題的序號為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)時都取得極值.

(1)求的值與函數(shù)的單調區(qū)間;

(2)若對,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的零點;

(2)當,求函數(shù)上的最大值;

(3)對于給定的正數(shù)a,有一個最大的正數(shù),使時,都有,試求出這個正數(shù),并求它的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農村建設取得巨大進步,農民年收入也逐年增加.為了制定提升農民年收入、實現(xiàn)2020年脫貧的工作計劃,該地扶貧辦統(tǒng)計了201950位農民的年收入并制成如下頻率分布直方圖:

1)根據(jù)頻率分布直方圖,估計50位農民的年平均收入元(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);

2)由頻率分布直方圖,可以認為該貧困地區(qū)農民年收入X服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計算得,利用該正態(tài)分布,求:

i)在扶貧攻堅工作中,若使該地區(qū)約有占總農民人數(shù)的84.14%的農民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?

ii)為了調研精準扶貧,不落一人的政策要求落實情況,扶貧辦隨機走訪了1000位農民.若每位農民的年收入互相獨立,問:這1000位農民中的年收入不少于12.14千元的人數(shù)最有可能是多少?

附參考數(shù)據(jù):,若隨機變量X服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)處取得極大值或極小值,則稱為函數(shù)的極值點.設函數(shù),,ab,kR.

(1)若x=1處的切線.①當有兩個極值點,,且滿足·=1時,求b的值及a的取值范圍;②當函數(shù)的圖象只有一個交點,求a的值;

(2)若對滿足函數(shù)的圖象總有三個交點P,Q,R”的任意突數(shù)k,都有PQ=QR成立,求a,b,k滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲地到乙地要經(jīng)過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.

(Ⅰ)設表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量的分布列和數(shù)學期望;

(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.

查看答案和解析>>

同步練習冊答案