【題目】給出下列命題,其中錯誤命題的個數(shù)為( )
(1)直線與平面不平行,則與平面內的所有直線都不平行;
(2)直線與平面不垂直,則與平面內的所有直線都不垂直;
(3)異面直線、不垂直,則過的任何平面與都不垂直;
(4)若直線和共面,直線和共面,則和共面
A. 1 B. 2 C. 3 D. 4
科目:高中數(shù)學 來源: 題型:
【題目】平面四邊形中, , 為等邊三角形,現(xiàn)將沿翻折得到四面體,點分別為的中點.
(Ⅰ)求證:四邊形為矩形;
(Ⅱ)當平面平面時,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交通安全法有規(guī)定:機動車行經(jīng)人行橫道時,應當減速行駛;遇行人正在通過人行橫道,應當停車讓行.機動車行經(jīng)沒有交通信號的道路時,遇行人橫過馬路,應當避讓.我們將符合這條規(guī)定的稱為“禮讓斑馬線”,不符合這條規(guī)定的稱為“不禮讓斑馬線”.下表是六安市某十字路口監(jiān)控設備所抓拍的5個月內駕駛員“不禮讓斑馬線”行為的統(tǒng)計數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
“不禮讓斑馬線”的駕駛員人數(shù) | 120 | 105 | 100 | 85 | 90 |
(1)根據(jù)表中所給的5個月的數(shù)據(jù),可用線性回歸模型擬合與的關系,請用相關系數(shù)加以說明;
(2)求“不禮讓斑馬線”的駕駛員人數(shù)關于月份之間的線性回歸方程;
(3)若從4,5月份“不禮讓斑馬線”的駕駛員中分別選取4人和2人,再從所選取的6人中任意抽取2人進行交規(guī)調查,求抽取的2人分別來自兩個月份的概率;
參考公式:線性回歸方程,其中,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面四個命題:
①在定義域上單調遞增;
②若銳角,滿足,則;
③是定義在上的偶函數(shù),且在上是增函數(shù),若,則;
④函數(shù)的一個對稱中心是;
其中真命題的序號為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的零點;
(2)當,求函數(shù)在上的最大值;
(3)對于給定的正數(shù)a,有一個最大的正數(shù),使時,都有,試求出這個正數(shù),并求它的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農村建設取得巨大進步,農民年收入也逐年增加.為了制定提升農民年收入、實現(xiàn)2020年脫貧的工作計劃,該地扶貧辦統(tǒng)計了2019年50位農民的年收入并制成如下頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,估計50位農民的年平均收入元(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);
(2)由頻率分布直方圖,可以認為該貧困地區(qū)農民年收入X服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計算得,利用該正態(tài)分布,求:
(i)在扶貧攻堅工作中,若使該地區(qū)約有占總農民人數(shù)的84.14%的農民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?
(ii)為了調研“精準扶貧,不落一人”的政策要求落實情況,扶貧辦隨機走訪了1000位農民.若每位農民的年收入互相獨立,問:這1000位農民中的年收入不少于12.14千元的人數(shù)最有可能是多少?
附參考數(shù)據(jù):,若隨機變量X服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)在處取得極大值或極小值,則稱為函數(shù)的極值點.設函數(shù),,a,b,kR.
(1)若為在x=1處的切線.①當有兩個極值點,,且滿足·=1時,求b的值及a的取值范圍;②當函數(shù)與的圖象只有一個交點,求a的值;
(2)若對滿足“函數(shù)與的圖象總有三個交點P,Q,R”的任意突數(shù)k,都有PQ=QR成立,求a,b,k滿足的條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從甲地到乙地要經(jīng)過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.
(Ⅰ)設表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量的分布列和數(shù)學期望;
(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com