【題目】濟南市開展支教活動,有五名教師被隨機的分到A、B、C三個不同的鄉(xiāng)鎮(zhèn)中學,且每個鄉(xiāng)鎮(zhèn)中學至少一名教師,
(1)求甲乙兩名教師同時分到一個中學的概率;
(2)求A中學分到兩名教師的概率;
(3)設隨機變量X為這五名教師分到A中學的人數,求X的分布列和期望.
【答案】
(1)解:由題意知本題是一個古典概型,
設甲乙兩位教師同時分到一個中學為事件A,
基本事件總數 =150
滿足條件的事件數C32A33+C31A33=36
∴P(A)= =
(2)解:由題意知本題是一個古典概型,
基本事件總數 =150
滿足條件是事件是A中學分到兩名教師共有C52C32A22=60
∴根據古典概型概率公式知有P=
(3)解:由題知X取值1,2,3.
P(X=1)=
P(X=2)= ,
P(X=3)= .
∴分布列為
X | 1 | 2 | 3 |
P |
∴期望值是EX= =
【解析】(1)本題是一個古典概型,試驗發(fā)生包含的基本事件總數 ,滿足條件的事件是甲乙兩位教師同時分到一個中學有C32A33+C31A33種結果,根據概率公式得到結果.(2)本題是一個古典概型,基本事件總數 ,滿足條件是事件是A中學分到兩名教師共有C52C32A22 , 得到結果.(3)根據題意,得到變量的可能取值,結合變量對應的事件寫出變量的概率,根據變量和概率的值寫出分布列,做出期望值.
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1= 且an+1=an﹣an2(n∈N*)
(1)證明:1< ≤2(n∈N*);
(2)設數列{an2}的前n項和為Sn , 證明 (n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)的解析式滿足 .
(1)求函數f(x)的解析式;
(2)當a=1時,試判斷函數f(x)在區(qū)間(0,+∞)上的單調性,并加以證明;
(3)當a=1時,記函數 ,求函數g(x)在區(qū)間 上的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓經過點, 的四個頂點構成的四邊形面積為.
(1)求橢圓的方程;
(2)在橢圓上是否存在相異兩點,使其滿足:①直線與直線的斜率互為相反數;②線段的中點在軸上,若存在,求出的平分線與橢圓相交所得弦的弦長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取50個作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為[5,15],(15,25],(25,35],(35,45],由此得到樣本的重量頻率分布直方圖(如圖).
(1)求的值;
(2)從盒子中隨機抽取3個小球,其中重量在[5,15]內的小球個數為X,求X的分布列和數學期望. (以直方圖中的頻率作為概率).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=ax2+bx,g(x)=2x﹣1.
(1)當a=1時,若函數f(x)的圖象恒在函數g(x)的圖象上方,試求實數b 的取值范圍;
(2)若y=f(x)對任意的x∈R均有f(x﹣2)=f(﹣x)成立,且f(x)的圖象經過 點A(1, ).
①求函數y=f(x)的解析式;
②若對任意x<﹣3,都有2k <g(x)成立,試求實數k的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com