15.不等式$1+\sqrt{3}tanx≥0$,x∈[0,π)的解集是$[0,\frac{π}{2})∪[\frac{5π}{6},π)$.

分析 不等式1+$\sqrt{3}$tanx≥0 即 tanx≥-$\frac{\sqrt{3}}{3}$,求出解集,{x|-$\frac{π}{6}$+kπ≤x<$\frac{π}{2}$+kπ,k∈Z},結(jié)合已知條件求解即可.

解答 解:不等式1+$\sqrt{3}$tanx≥0 即 tanx≥-$\frac{\sqrt{3}}{3}$,又 kπ-$\frac{π}{2}$<x<kπ+$\frac{π}{2}$,k∈z,
∴{x|-$\frac{π}{6}$+kπ≤x<$\frac{π}{2}$+kπ,k∈Z},x∈[0,π),
可得x∈$[0,\frac{π}{2})∪[\frac{5π}{6},π)$.
故答案為:$[0,\frac{π}{2})∪[\frac{5π}{6},π)$.

點(diǎn)評 本題考查正切函數(shù)的定義域,正切函數(shù)的單調(diào)性,注意利用正切函數(shù)的定義域,這是解題的易錯(cuò)點(diǎn),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖是某幾何體的三視圖,則該幾何體的體積是( 。
A.$\frac{4}{3}$$\sqrt{22}$B.$\frac{4}{3}$$\sqrt{66}$C.$\sqrt{66}$D.4$\sqrt{66}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某學(xué)校舉辦了一次寫作水平測試,成績共有100分,85分,70分,60分及50分以下5種情況,并將成績分成5個(gè)等級,從全校參賽學(xué)生中隨機(jī)抽取30名學(xué)生,情況如下:
成績等級ABCDE
成績(分)10085706050以下
人數(shù)(名)1ab8c
已知在全校參加比賽的學(xué)生中任意抽取一人,估計(jì)出該同學(xué)成績達(dá)到60分及60分以上的概率為$\frac{4}{5}$,其成績等級為“A或B”的概率為$\frac{1}{5}$,則a=5;b=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C:ρsin2θ=2cosθ,過定點(diǎn)P(-2,-4)的直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-2+\frac{{\sqrt{2}}}{2}t\\ y=-4+\frac{{\sqrt{2}}}{2}t\end{array}\right.(t為參數(shù))$,若直線l和曲線C相交于M、N兩點(diǎn).
(Ⅰ)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)證明:|PM|、|MN|、|PN|成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=x+$\frac{a}{x}$(a>0)的單調(diào)減區(qū)間為(-$\sqrt{a}$,0),(0,$\sqrt{a}$),若f(x)在[a-2,+∞)上是增函數(shù),則a的取值范圍為[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,圓內(nèi)接四邊形ABCD的邊BC與AD的延長線交于點(diǎn)E,點(diǎn)F在BA的延長線上.
(1)若EF∥CD,證明:EF2=FA•FB;
(2)若EB=3EC,EA=2ED,求$\frac{DC}{AB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知曲線C的極坐標(biāo)方程是ρ=4cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,若傾斜角為$\frac{π}{3}$的直線l經(jīng)過點(diǎn)P(4,2).
(Ⅰ)寫出直線l的參數(shù)方程,并將曲線C的極坐標(biāo)方程化為直角坐標(biāo)系方程;
(Ⅱ)若直線l與曲線C交于不同的兩點(diǎn)A、B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知矩陣A=$[\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array}]$,向量$\overrightarrow{a}$=$[\begin{array}{l}{5}\\{3}\end{array}]$,計(jì)算A5$\overrightarrow{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,為測量山高M(jìn)N,選擇A和另一座山的山頂C為測量觀測點(diǎn).從M點(diǎn)測得A點(diǎn)的俯角∠NMA=30°,C點(diǎn)的仰角∠CAB=45°以及∠MAC=75°;從C點(diǎn)測得∠MCA=60°;已知山高BC=200m,則山高M(jìn)N=( 。
A.300 mB.200$\sqrt{2}$ mC.200$\sqrt{3}$ mD.300$\sqrt{2}$ m

查看答案和解析>>

同步練習(xí)冊答案