【題目】在某校冬季長(zhǎng)跑活動(dòng)中,學(xué)校要給獲得一二等獎(jiǎng)的學(xué)生購(gòu)買獎(jiǎng)品,要求花費(fèi)總額不得超過(guò)200元.已知一等獎(jiǎng)和二等獎(jiǎng)獎(jiǎng)品的單架分別為2010元,一等獎(jiǎng)人數(shù)與二等獎(jiǎng)人數(shù)的比值不得高于,且獲得一等獎(jiǎng)的人數(shù)不能少于2人,有下列四個(gè)結(jié)論:①最多可以購(gòu)買4份一等獎(jiǎng)獎(jiǎng)品②最多可以購(gòu)買16份二等獎(jiǎng)獎(jiǎng)品③購(gòu)買獎(jiǎng)品至少要花費(fèi)100元④共有20種不同的購(gòu)買獎(jiǎng)品方案其中正確結(jié)論的序號(hào)為___________.

【答案】①②③

【解析】

設(shè)購(gòu)買一、二等獎(jiǎng)獎(jiǎng)品份數(shù)分別為、,則根據(jù)題意列出線性規(guī)劃條件, 作出可行域,再逐一判斷即可.

: 設(shè)購(gòu)買一、二等獎(jiǎng)獎(jiǎng)品份數(shù)分別為,

則根據(jù)題意有 ,

作可行域?yàn)?/span>:

解得:,,

所以最多可以購(gòu)買4份一等獎(jiǎng)獎(jiǎng)品,

最多可以購(gòu)買16份二等獎(jiǎng)獎(jiǎng)品, 故①②正確,

購(gòu)買獎(jiǎng)品至少要花費(fèi)元,故③正確,

由可行域知:,,,

可行域內(nèi)的整數(shù)點(diǎn)有

,個(gè).故④錯(cuò)誤.

故答案為: ①②③

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的個(gè)數(shù)有(

①向量是共線向量,則A、B、CD四點(diǎn)必在一直線上;②單位向量都相等;③任一向量與它的相反向量不相等;④共線的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)已知點(diǎn),直線與曲線交于兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),順次連接橢圓的四個(gè)頂點(diǎn)得到的四邊形的面積為,點(diǎn).

(Ⅰ)求橢圓的方程.

(Ⅱ)已知點(diǎn),是橢圓上的兩點(diǎn).

(ⅰ)若,且為等邊三角形,求的面積;

(ⅱ)若,證明: 不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分別求適合下列條件的a的值.

(1)9∈(AB);(2){9}=AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,底面為正方形,且底面,過(guò)的平面與側(cè)面的交線為,且滿足表示的面積.

(1)證明: 平面;

(2)當(dāng)時(shí),二面角的余弦值為,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新型冠狀病毒肺炎疫情爆發(fā)以來(lái),疫情防控牽掛著所有人的心. 某市積極響應(yīng)上級(jí)部門的號(hào)召,通過(guò)沿街電子屏、微信公眾號(hào)等各種渠道對(duì)此戰(zhàn)“疫”進(jìn)行了持續(xù)、深入的懸窗,幫助全體市民深入了解新冠狀病毒,增強(qiáng)戰(zhàn)勝疫情的信心. 為了檢驗(yàn)大家對(duì)新冠狀病毒及防控知識(shí)的了解程度,該市推出了相關(guān)的知識(shí)問(wèn)卷,隨機(jī)抽取了年齡在15~75歲之間的200人進(jìn)行調(diào)查,并按年齡繪制頻率分布直方圖如圖所示,把年齡落在區(qū)間內(nèi)的人分別稱為“青少年人”和“中老年人”. 經(jīng)統(tǒng)計(jì)“青少年人”和“中老年人”的人數(shù)比為19:21. 其中“青少年人”中有40人對(duì)防控的相關(guān)知識(shí)了解全面,“中老年人”中對(duì)防控的相關(guān)知識(shí)了解全面和不夠全面的人數(shù)之比是2:1.

1)求圖中的值;

2)現(xiàn)采取分層抽樣在中隨機(jī)抽取8名市民,從8人中任選2人,求2人中至少有1人是“中老年人”的概率是多少?

3)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)統(tǒng)計(jì)結(jié)果判斷:能夠有99.9%的把握認(rèn)為“中老年人”比“青少年人”更加了解防控的相關(guān)知識(shí)?

了解全面

了解不全面

合計(jì)

青少年人

中老年人

合計(jì)

附表及公式:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C=2px經(jīng)過(guò)點(diǎn)(1,2).過(guò)點(diǎn)Q(0,1)的直線l與拋物線C有兩個(gè)不同的交點(diǎn)A,B,且直線PAy軸于M直線PBy軸于N

求直線l的斜率的取值范圍;

設(shè)O為原點(diǎn),,求證為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用水清洗一堆蔬菜上殘留的農(nóng)藥,對(duì)用一定量的水清洗一次的效果作如下假定:用1個(gè)單位量的水可洗掉蔬菜上殘留農(nóng)藥量的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù)

1)試規(guī)定的值,并解釋其實(shí)際意義;

2)試根據(jù)假定寫出函數(shù)應(yīng)該滿足的條件和具有的性質(zhì);

3)設(shè).現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次,試問(wèn)用哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案