設(shè)橢圓: 過點(diǎn)(0,4),離心率為.
(1)求的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線被所截線段的中點(diǎn)坐標(biāo).
【分析】(1)由橢圓過已知點(diǎn)和橢圓離心率可以列出方程組,解方程組即可,也可以分步求解;(2)直線方程和橢圓方程組成方程組,可以求解,也可以利用根與系數(shù)關(guān)系;然后利用中點(diǎn)坐標(biāo)公式求解.
【解】(1)將點(diǎn)(0,4)代入的方程得, ∴b=4,
又 得,即, ∴
∴的方程為
(2)過點(diǎn)且斜率為的直線方程為,
設(shè)直線與C的交點(diǎn)為A,B,將直線方程代入C的方程,得
,即,解得,,
AB的中點(diǎn)坐標(biāo),,
即所截線段的中點(diǎn)坐標(biāo)為.
注:用韋達(dá)定理正確求得結(jié)果,同樣給分.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
1 |
k1 |
1 |
k2 |
1 |
k3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山西太原第五中學(xué)高二12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)橢圓C:過點(diǎn)(0,4),離心率為
(Ⅰ)求C的方程;(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆福建省高二下學(xué)期第一次階段考數(shù)學(xué)文科試卷 題型:解答題
設(shè)橢圓C: 過點(diǎn)(0,4),(5,0).
(1)求C的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線被橢圓C所截線段的中點(diǎn)坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)橢圓C: 過點(diǎn)(0,4),離心率為
(Ⅰ)求C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com