已知函數(shù)f(x)=lg(ax-1)-lg(x-1)在[10,﹢∞)上為單調(diào)增函數(shù),求實數(shù)a的取值范圍.
考點:函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:f(x)=lg
ax-1
x-1
=lg(a+
a-1
x-1
),a>0,ax-1>0,x>
1
a
,化簡得出g(x)=a+
a-1
x-1
在[10,﹢∞)上為單調(diào)增函數(shù),得出;
a>0
a>1
a>
1
10
即可求解.
解答: 解:∵f(x)=lg(ax-1)-lg(x-1)在[10,﹢∞)上為單調(diào)增函數(shù),
∴f(x)=lg
ax-1
x-1
=lg(a+
a-1
x-1
),a>0,ax-1>0,x>
1
a
,
a-1>0時,g(x)=a+
a-1
x-1
在[10,﹢∞)上為單調(diào)增函數(shù),
a>0
a-1>0
1
a
<10
,
得出;
a>0
a>1
a>
1
10

故實數(shù)a的取值范圍:a>1,
點評:本題考查了函數(shù)的單調(diào)性,運用不等式求解即可,難度不大,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a≥0,b≥0.若關(guān)于x的方程x2+2(a+1)x+b2=0與x2+(b+1)x+a2=0都有實數(shù)根,則a+b的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式ax2+bx-2>0的解集為(-∞,-
1
2
)∪(
1
3
,+∞),則ab=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列敘述:
①函數(shù)y=
1
x
在(-∞,0)∪(0,+∞)上是減函數(shù);
②已知集合P={a,b},Q={-1,0.1},則映射f:P→Q中滿足f(b)=0的映射共有3個;
③對于函數(shù)f(x)=-x2+1,當(dāng)x1≠x2時,都有
f(x1)+f(x2)
2
<f(
x1+x2
2
)
;
④若函數(shù)f(x)=
(2-m)x+
1
2
(x<1)
mx(x≥1)
在R上是增函數(shù),則m的取值范圍是1<m<2;
其中正確的所有番號是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-2,x≥0
2-x,x<0

(1)若f(a)=2,求a的值;
(2)證明f(x)在[0,+∞)上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2-2ax在區(qū)間[1,2]上是增函數(shù),則f(2)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=5sin(ωx+
π
3
)(ω>0)與g(x)=2sin(2x+φ)(0<φ<π)的圖象有相同的對稱軸,則函數(shù)g(x)的一個單調(diào)區(qū)間為(  )
A、[-
12
,0]
B、[-
π
12
,
π
2
]
C、[
π
12
,
3
]
D、[π,
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,若∠C=90°,則三邊的比
a+b
c
=( 。
A、
2
cos
A+B
2
B、
2
cos
A-B
2
C、
2
sin
A+B
2
D、
2
sin
A-B
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若如圖所給程序框圖運行的結(jié)果恰為s>
2012
2013
,那么判斷框中可以填入的關(guān)于k的判斷條件是( 。
A、k>2013
B、k>2012
C、k<2013
D、k<2012

查看答案和解析>>

同步練習(xí)冊答案