精英家教網 > 高中數學 > 題目詳情

設不等式的解集為M,求當x∈M時函數的最大、最小值.

最小值為,最大值為8.

解析試題分析:將看成一個整體,由不等式得出,從而得到集合;將化簡得到一個關于的二次函數,問題轉化成二次函數在某個區(qū)間上的最值問題.
試題解析:由,    2分
解得:,                4分
所以,                   5分
所以.                 6分
=,          8分
,則.              9分
所以上單調遞減,          10分
所以當時取最小值為,當取,.          13分
考點:二次不等式的解法,對數的運算性質,二次函數在某固定區(qū)間上的最值,轉化與化歸思想.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

運貨卡車以每小時千米的速度勻速行駛130千米(單位:千米/小時).假設汽油的價格是每升2元,而汽車每小時耗油升,司機的工資是每小時14元.
(1)求這次行車總費用關于的表達式;
(2)當為何值時,這次行車的總費用最低,并求出最低費用的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某校課外興趣小組的學生為了給學校邊的一口被污染的池塘治污,他們通過實驗后決定在池塘中投放一種能與水中的污染物質發(fā)生化學反應的藥劑.已知每投放個單位的藥劑,它在水中釋放的濃度(克/升)隨著時間(天)變化的函數關系式近似為,其中若多次投放,則某一時刻水中的藥劑濃度為各次投放的藥劑在相應時刻所釋放的濃度之和.根據經驗,當水中藥劑的濃度不低于4(克/升)時,它才能起到有效治污的作用.
(Ⅰ)若一次投放4個單位的藥劑,則有效治污時間可達幾天?
(Ⅱ)若第一次投放2個單位的藥劑,6天后再投放個單位的藥劑,要使接下來的4天中能夠持續(xù)有效治污,試求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=,試利用基本初等函數的圖象,判斷f(x)有幾個零點,并利用零點存在性定理確定各零點所在的區(qū)間(各區(qū)間長度不超過1).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義在上的單調函數滿足,且對任意都有
(1)求證:為奇函數;
(2)若對任意恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(其中為常數且  )的圖象經過點.
(1)求的解析式;
(2)若不等式上恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求函數的定義域;
(2)若關于的不等式的解集是,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,已知橢圓的離心率,且橢圓C上一點到點Q的距離最大值為4,過點的直線交橢圓于點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P為橢圓上一點,且滿足(O為坐標原點),當時,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數圖象上一點處的切線方程為.
(1)求的值;
(2)若方程內有兩個不等實根,求的取值范圍(其中為自然對數的底數);(3)令,若的圖象與軸交于(其中),的中點為,求證:處的導數

查看答案和解析>>

同步練習冊答案