分析 (1)由已知條件利用等比數(shù)列前n項(xiàng)和公式和通項(xiàng)公式,列出方程組,由此能求出首項(xiàng)與項(xiàng)數(shù)n.
(2)由已知條件利用等比數(shù)列的通項(xiàng)公式列出方程組,求出首項(xiàng)和公比,由此能求出a4和S5.
(3)利用等比數(shù)列前n項(xiàng)和公式求出首項(xiàng),由此能求出S8.
解答 解:(1)∵等比數(shù)列{an}中,Sn=189,q=2,an=96,
∴$\left\{\begin{array}{l}{\frac{{a}_{1}(1-{2}^{n})}{1-2}=189}\\{{a}_{1}×{2}^{n-1}=96}\end{array}\right.$,
解得a1=3,n=6.
(2)∵等比數(shù)列{an}中,a1+a3=10,a4+a6=$\frac{5}{4}$,
∴$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}{q}^{2}=10}\\{{a}_{1}{q}^{3}+{a}_{1}{q}^{5}=\frac{5}{4}}\end{array}\right.$,
解得${a}_{1}=8,q=\frac{1}{2}$,
∴${a}_{4}={a}_{1}{q}^{3}=8×\frac{1}{8}$=1,
S5=$\frac{{a}_{1}(1-{q}^{5})}{1-q}$=$\frac{8(1-\frac{1}{{2}^{5}})}{1-\frac{1}{2}}$=16(1-$\frac{1}{32}$)=$\frac{31}{2}$.
(3)∵在等比數(shù)列{an}中,q=2,S4=1,
∴$\frac{{a}_{1}(1-{2}^{4})}{1-2}=1$,解得${a}_{1}=\frac{1}{15}$,
∴S8=$\frac{{a}_{1}(1-{q}^{8})}{1-q}$=$\frac{\frac{1}{15}(1-{2}^{8})}{1-2}$=17.
點(diǎn)評(píng) 本題考查等差數(shù)列的性質(zhì)的應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的前n項(xiàng)和公式和通項(xiàng)公式的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com