設S、V分別表示面積和體積,如△ABC面積用SABC表示,三棱錐O-ABC的體積用VO-ABC表示.對于命題:如果O是線段AB上一點,則|+|.將它類比到平面的情形是:若O是△ABC內(nèi)一點,有SOBC·+SOCA·+SOBA·.將它類比到空間的情形應該是:若O是三棱錐A-BCD內(nèi)一點,則有___________________________

 

【答案】

VO-BCD·+VO-ACD·+VO-ABD·+VO-ABC·

【解析】解:因為如果O是線段AB上一點,則|+|.將它類比到平面的情形是:若O是△ABC內(nèi)一點,有SOBC·+SOCA·+SOBA·.將它類比到空間的情形應該是:若O是三棱錐A-BCD內(nèi)一點,則有VO-BCD·+VO-ACD·+VO-ABD·+VO-ABC·

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設S、V分別表示面積和體積,如△ABC面積用S△ABC表示,三棱錐O-ABCV的體積用VO-ABC表示.對于命題:如果O是線段AB上一點,則|
OB
|•
OA
+|
OA
|•
OB
=
0
.將它類比到平面的情形是:若O是△ABC內(nèi)一點,有S△OBC
OA
+S△OCA
OB
+S△OBA
OC
=
0
.將它類比到空間的情形應該是:若O是三棱錐A-BCD內(nèi)一點,則有
VO-BCD
OA
+VO-ACD
OB
+VO-ABD
OC
+VO-ABC
OD
=
0
VO-BCD
OA
+VO-ACD
OB
+VO-ABD
OC
+VO-ABC
OD
=
0

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆廣東省高二第七學段考試理科數(shù)學試卷(解析版) 題型:解答題

(本小題14分)請你設計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得ABCD四個點重合于圖中的點P,正好形成一個正四棱柱(底面是正方形的直棱柱)形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形HEF斜邊的兩個端點,設AE=FB=xcm.

(1)請用分別表示|GE|、|EH|的長

(2)若廣告商要求包裝盒側(cè)面積S(cm2)最大,試問x應取何值?

H

 
(3)若廣告商要求包裝盒容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.

 

查看答案和解析>>

同步練習冊答案