(2012•成都一模)已知函數(shù)f(x)=x2-2mx+2-m
(1)若不等式f(x)≥-mx+2在R上恒成立,求實數(shù)m的取值范圍
(2)設函數(shù)f(x)在[0,1]上的最小值為g(m),求g(m)的解析式及g(m)=1時實數(shù)m的值.
分析:(1)由題意知,f(x)≥-mx在R上恒成立,即x2-mx+2-m≥0恒成立,由此能求出實數(shù)m的取值范圍.
(2)函數(shù)f(x)=x2-2mx+2-m的對稱軸為x=m,由此進行分類討論,能夠求出g(m)的解析式及g(m)=1時實數(shù)m的值.
解答:解:(1)由題意知,f(x)≥-mx在R上恒成立,
即x2-mx+2-m≥0恒成立,
∴△=m2+4m-8≤0,
解得-2-2
3
≤m≤-2+2
3

∴實數(shù)m的取值范圍是[-2-2
3
,-2+2
3
].
(2)函數(shù)f(x)=x2-2mx+2-m的對稱軸為x=m,
①當m<0時,
函數(shù)f(x)在[0,1]上的最小值g(m)=f(0)=2-m.
②當0≤m≤1時,
函數(shù)f(x)在[0,1]上的最小值g(m)=f(1)=-3m+3,
綜上所述,g(x)=
2-m,m<0
-m2-m+2,0≤m≤1
-3m+3,m>1
,
∵g(m)=1,
∴m=
5
-1
2
點評:本題考查函數(shù)恒成立的應用,解題時要認真審題,仔細解答,注意分類討論思想和等價轉化思想的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)若函數(shù)f(x)滿足:在定義域D內存在實數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)為“1的飽和函數(shù)”.有下列函數(shù):
①f(x)=
1x
;②f(x)=2x

③f(x)=lg(x2+2);
④f(x)=cosπx,
其中你認為是“1的飽和函數(shù)”的所有函數(shù)的序號為
②④
②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)設正方體ABC-A1B1C1D1 的棱長為2,動點E,F(xiàn)在棱A1B1上,動點P、Q分別在棱AD、CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z>0),則下列結論中錯誤的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)已知函數(shù)f(x)=
3
inωxcosωx+1-sin2ωx
的周期為2π,其中ω>0.
(I)求ω的值及函數(shù)f(x)的單調遞增區(qū)間;
(II)在△ABC中,設內角A、B、C所對邊的長分別為a、b,c若a=
3
,c=2,f(A)=
3
2
,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都一模)設集合S={1,2,3,4,5,6},定義集合對(A,B):A⊆S,B⊆S,A中含有3個元素,B中至少含有2個元素,且B中最小的元素不小于A中最大的元素.記滿足A∪B=S的集合對(A,B)的總個數(shù)為m,滿足A∩B≠∅的集合對(A,B)的總個數(shù)為n,則
m
n
的值為(  )

查看答案和解析>>

同步練習冊答案