【題目】某企業(yè)為了增加某種產(chǎn)品的生產(chǎn)能力,決定改造原有生產(chǎn)線,需一次性投資300萬元,第一年的年生產(chǎn)能力為300噸,隨后以每年40噸的速度逐年遞減,根據(jù)市場調(diào)查與預(yù)測,該產(chǎn)品的年銷售量的頻率分布直方圖如圖所示,該設(shè)備的使用年限為3年,該產(chǎn)品的銷售利潤為1萬元噸.

1根據(jù)年銷售量的頻率分布直方圖,估算年銷量的平均數(shù)同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表;

2將年銷售量落入各組的頻率視為概率,各組的年銷售量用該組區(qū)間的中點(diǎn)值作年銷量的估計(jì)值,并假設(shè)每年的銷售量相互獨(dú)立.

根據(jù)頻率分布直方圖估計(jì)年銷售利潤不低于180萬的概率和不低于220萬的概率;

試預(yù)測該企業(yè)3年的總凈利潤年的總凈利潤年銷售利潤一投資費(fèi)用

【答案】(1)206;(2),

【解析】

1)由頻率分布直方圖能求出年銷量的平均數(shù);

2)(i)由頻率分布直方圖得只有當(dāng)年平均銷量不低于220噸時(shí),年銷售利潤才不低于220萬,由此能求出年銷售利潤不低于220萬的概率;

ii)分別求出第一年到第三年的利潤,由此能預(yù)測該企業(yè)3年的總凈利潤.

1年銷量的平均數(shù)

2該產(chǎn)品的銷售利潤為1萬元噸,

由頻率分布直方圖得只有當(dāng)年平均銷量不低于220噸時(shí),年銷售利潤才不低于220萬,

年銷售利潤不低于220萬的概率

1可知第一年的利潤為:萬元,

第二年的利潤為:萬元,

第三年的利潤為:萬元

預(yù)測該企業(yè)3年的總凈利潤為:萬元

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年12月18日上午10時(shí),在人民大會堂舉行了慶祝改革開放40周年大會.40年眾志成城,40年砥礪奮進(jìn),40年春風(fēng)化雨,中國人民用雙手書寫了國家和民族發(fā)展的壯麗史詩.會后,央視媒體平臺,收到了來自全國各地的紀(jì)念改革開放40年變化的老照片,并從眾多照片中抽取了100張照片參加“改革開放40年圖片展”,其作者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如下:

(Ⅰ)求這100位作者年齡的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);

(Ⅱ)由頻率分布直方圖可以認(rèn)為,作者年齡X服從正態(tài)分布,其中近似為樣本平

均數(shù),近似為樣本方差

(i)利用該正態(tài)分布,求

(ii)央視媒體平臺從年齡在的作者中,按照分層抽樣的方法,抽出了7人參加“紀(jì)念改革開放40年圖片展”表彰大會,現(xiàn)要從中選出3人作為代表發(fā)言,設(shè)這3位發(fā)言者的年齡落在區(qū)間的人數(shù)是Y,求變量Y的分布列和數(shù)學(xué)期望.附:,若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

已知曲線的極坐標(biāo)方程為.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

(1)求曲線的直角坐標(biāo)方程和直線的普通方程;

(2)求直線被曲線所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計(jì)數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺)

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測6月份該商場空調(diào)的銷售量;

(2)若該商場的營銷部對空調(diào)進(jìn)行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地?cái)M購買空調(diào)的消費(fèi)群體十分龐大,經(jīng)過營銷部調(diào)研機(jī)構(gòu)對其中的500名顧客進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

有購買意愿對應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》卷第五《商功》中,有“賈令芻童,上廣一尺,袤二尺,下廣三尺,袤四尺,高一尺!保馑际牵骸凹僭O(shè)一個(gè)芻童,上底面寬1尺,長2尺;下底面寬3尺,長4尺,高1尺(如圖)!保ㄗⅲ浩c童為上下底面為相互平行的不相似長方形,兩底面的中心連線與底面垂直的幾何體),若該幾何體所有頂點(diǎn)在一球體的表面上,則該球體的表面積為( )

A. 平方尺 B. 平方尺 C. 平方尺 D. 平方尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)當(dāng)時(shí),解不等式;

(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,,以為邊在軸上方作一個(gè)平行四邊形,滿足.

(1)求動點(diǎn)的軌跡方程;

(2)將動點(diǎn)的軌跡方程所表示的曲線向左平移個(gè)單位得曲線,若是曲線上的一點(diǎn),當(dāng)時(shí),記為點(diǎn)到直線距離的最大值,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】田忌賽馬是史記中記載的一個(gè)故事,說的是齊國將軍田忌經(jīng)常與齊國眾公子賽馬,孫臏發(fā)也們的馬腳力都差不多,都分為上、中、下三等于是孫臏給田忌將軍制定了一個(gè)必勝策略:比賽即將開始時(shí),他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得公子們許多賭注假設(shè)田忌的各等級馬與某公子的各等級馬進(jìn)行一場比賽獲勝的概率如表所示:

田忌的馬獲勝概率公子的馬

上等馬

中等馬

下等馬

上等馬

1

中等馬

下等馬

0

比賽規(guī)則規(guī)定:一次比由三場賽馬組成,每場由公子和田忌各出一匹馬出騫,結(jié)果只有勝和負(fù)兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.

如果按孫臏的策略比賽一次,求田忌獲勝的概率;

如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4支足球隊(duì)進(jìn)行單循環(huán)比賽(任兩支球隊(duì)恰進(jìn)行一場比賽),任兩支球隊(duì)之間勝率都是.單循環(huán)比賽結(jié)束,以獲勝的場次數(shù)作為該隊(duì)的成績,成績按從大到小排名次順序,成績相同則名次相同.下列結(jié)論中正確的是(

A.恰有四支球隊(duì)并列第一名為不可能事件B.有可能出現(xiàn)恰有三支球隊(duì)并列第一名

C.恰有兩支球隊(duì)并列第一名的概率為D.只有一支球隊(duì)名列第一名的概率為

查看答案和解析>>

同步練習(xí)冊答案