【題目】如圖1所示,在等腰梯形ABCD中, .把△ABE沿BE折起,使得 ,得到四棱錐A﹣BCDE.如圖2所示.
(1)求證:面ACE⊥面ABD;
(2)求平面ABE與平面ACD所成銳二面角的余弦值.
【答案】
(1)證明:在等腰梯形ABCD中BC=3,AD=15,BE⊥AD,可知AE=6,DE=9.
因為 ,可得CE=6.
又因為 ,即AC2=CE2+AE2,則AE⊥EC.
又BE⊥AE,BE∩EC=E,可得AE⊥面BCDE,故AE⊥BD.
又因為 ,
則∠DBE=60°, ,則∠BEC=30°,
所以CE⊥BD,
又AE∩EC=E,所以BD⊥面ACE,
又BD面ABD,所以面ABD⊥面ACE
(2)解:設(shè)EC∩BD=O,過點O作OF∥AE交AC于點F,
以點O為原點,以O(shè)B,OC,OF所在直線分別為x,y,z軸,建立如圖所示的空間直角坐標(biāo)系O﹣BCF.
在△BCE中,∵∠BEO=30°,BO⊥EO,
∴ ,則 ,
∵ ,
∴FO=3,則 ,
∵DE∥BC,DE=9,∴ ,∴ ,
∴ ,
設(shè)平面ABE的法向量為 ,
由 ,取 ,可得平面ABE的法向量為 =( ),
設(shè)平面ACD的一個法向量為 ,
由 ,
取x2=1,可得平面ABE的一個法向量為 =(1,﹣3 ,﹣3 ).
設(shè)平面ABE與平面ACD所成銳二面角為θ,
則cosθ= = = ,
所以平面ABE與平面ACD所成銳二面角的余弦值為 .
【解析】(1)推導(dǎo)出AE⊥EC,AE⊥BD,CE⊥BD,從而BD⊥面ACE,由此能證明面ABD⊥面ACE.(2)設(shè)EC∩BD=O,過點O作OF∥AE交AC于點F,以點O為原點,以O(shè)B,OC,OF所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系O﹣BCF,利用向量法能求出平面ABE與平面ACD所成銳二面角的余弦值.
【考點精析】解答此題的關(guān)鍵在于理解平面與平面垂直的判定的相關(guān)知識,掌握一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,若方程f(f(x))=a(a>0)恰有兩個不相等的實根x1 , x2 , 則e e 的最大值為( )
A.
B.2(ln2﹣1)
C.
D.ln2﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣3)ex+ax,a∈R. (Ⅰ)當(dāng)a=1時,求曲線f(x)在點(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a∈[0,e)時,設(shè)函數(shù)f(x)在(1,+∞)上的最小值為g(a),求函數(shù)g(a)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為評估兩套促銷活動方案(方案1運作費用為5元/件;方案2的運作費用為2元/件),在某地區(qū)部分營銷網(wǎng)點進(jìn)行試點(每個試點網(wǎng)點只采用一種促銷活動方案),運作一年后,對比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.
(1)請根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動運作費用),為制定本年度該地區(qū)的產(chǎn)品銷售價格,統(tǒng)計上一年度的8組售價xi(單位:元/件,整數(shù))和銷量yi(單位:件)(i=1,2,…,8)如下表所示:
售價x | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
銷量y | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①請根據(jù)下列數(shù)據(jù)計算相應(yīng)的相關(guān)指數(shù)R2 , 并根據(jù)計算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;
②根據(jù)所選回歸模型,分析售價x定為多少時?利潤z可以達(dá)到最大.
|
|
| |
| 49428.74 | 11512.43 | 175.26 |
| 124650 |
(附:相關(guān)指數(shù) )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代算書《孫子算經(jīng)》上有個有趣的問題“出門望九堤”:今有出門重九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雛,雛有九毛,毛有九色,問各幾何?現(xiàn)在我們用右圖所示的程序框圖來解決這個問題,如果要使輸出的結(jié)果為禽的數(shù)目,則在該框圖中的判斷框中應(yīng)該填入的條件是( )
A.S>10000?
B.S<10000?
C.n≥5
D.n≤6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是首項為1,公差為2的等差數(shù)列,{bn}是首項為1,公比為q的等比數(shù)列.記cn=an+bn , n=1,2,3,….
(1)若{cn}是等差數(shù)列,求q的值;
(2)求數(shù)列{cn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線C的頂點是原點,以x軸為對稱軸,且經(jīng)過點P(1,2). (Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)點A,B在拋物線C上,直線PA,PB分別與y軸交于點M,N,|PM|=|PN|.求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (其中t為參數(shù)).現(xiàn)以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=6cosθ.
(Ⅰ) 寫出直線l普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ) 過點M(﹣1,0)且與直線l平行的直線l1交C于A,B兩點,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見》,某校計劃開設(shè)八門研學(xué)旅行課程,并對全校學(xué)生的選擇意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果整理成條形圖如下.圖中,已知課程A,B,C,D,E為人文類課程,課程F,G,H為自然科學(xué)類課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合圖表,采取分層抽樣方法從全校抽取1%的學(xué)生作為研究樣本組(以下簡稱“組M”).
(Ⅰ)在“組M”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?
(Ⅱ)為參加某地舉辦的自然科學(xué)營活動,從“組M”所有選擇自然科學(xué)類課程的同學(xué)中隨機(jī)抽取4名同學(xué)前往,其中選擇課程F或課程H的同學(xué)參加本次活動,費用為每人1500元,選擇課程G的同學(xué)參加,費用為每人2000元.
(。┰O(shè)隨機(jī)變量X表示選出的4名同學(xué)中選擇課程G的人數(shù),求隨機(jī)變量X的分布列;
(ⅱ)設(shè)隨機(jī)變量Y表示選出的4名同學(xué)參加科學(xué)營的費用總和,求隨機(jī)變量Y的期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com