【題目】已知.
(1)設(shè)是的極值點,求實數(shù)的值,并求的單調(diào)區(qū)間:
(2)時,求證:.
【答案】(1) 單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為; (2)見解析.
【解析】
(1)由題意,求得函數(shù)的導(dǎo)數(shù),由是函數(shù)的極值點,解得,又由,進而得到函數(shù)的單調(diào)區(qū)間;
(2)由(1),進而得到函數(shù)的單調(diào)性和最小值,令,利用導(dǎo)數(shù)求得在上的單調(diào)性,即可作出證明.
(1)由題意,函數(shù)的定義域為,
又由,且是函數(shù)的極值點,
所以,解得,
又時,在上,是增函數(shù),且,
所以,得,,得,
所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)由(1)知因為,在上,是增函數(shù),
又(且當(dāng)自變量逐漸趨向于時,趨向于),
所以,,使得,
所以,即,
在上,,函數(shù)是減函數(shù),
在上,,函數(shù)是增函數(shù),
所以,當(dāng)時,取得極小值,也是最小值,
所以,
令,
則,
當(dāng)時,,函數(shù)單調(diào)遞減,所以,
即成立,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,且ABBP2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD與平面ABPE所成的二面角的余弦值;
(2)線段PD上是否存在一點N,使得直線BN與平面PCD所成角的正弦值等于?若存在,試確定點N的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓E: (a>b>0)的離心率為,焦距為2.
(1)求橢圓E的方程;
(2)如圖,動直線l:y=k1x-交橢圓E于A,B兩點,C是橢圓E上一點,直線OC的斜率為k2,且k1k2=.M是線段OC延長線上一點,且|MC|∶|AB|=2∶3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點分別為S,T.求∠SOT的最大值,并求取得最大值時直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(Ⅰ)寫出曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C交于A,B兩點,且AB的長度為2,求直線l的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時,討論的單調(diào)性;
(2)設(shè),當(dāng)時,若對任意,存在使,求實數(shù)取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,,,為線段的中點,是線段上一動點.
(1)當(dāng)時,求證:面;
(2)當(dāng)的面積最小時,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(x1,f(x1)),B(x2,f(x2))是函數(shù)f(x)=2sin(ωx+φ)圖象上的任意兩點,且角φ的終邊經(jīng)過點,若|f(x1)﹣f(x2)|=4時,|x1﹣x2|的最小值為.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)時,不等式mf(x)+2m≥f(x)恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,OB、CD是兩條互相平行的筆直公路,且均與筆直公路OC垂直(公路寬度忽略不計),半徑OC=1千米的扇形COA為該市某一景點區(qū)域,當(dāng)?shù)卣疄榫徑饩包c周邊的交通壓力,欲在圓弧AC上新增一個入口E(點E不與A、C重合),并在E點建一段與圓弧相切(E為切點)的筆直公路與OB、CD分別交于M、N.當(dāng)公路建成后,計劃將所圍成的區(qū)域在景點之外的部分建成停車場(圖中陰影部分),設(shè)∠CON=θ,停車場面積為S平方千米.
(1)求函數(shù)S=f(θ)的解析式,并寫出函數(shù)的定義域;
(2)為對該計劃進行可行性研究,需要預(yù)知所建停車場至少有多少面積,請計算當(dāng)θ為何值時,S有最小值,并求出該最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱臺的上下底面分別是邊長為2和4的正方形, = 4且 ⊥底面,點為的中點.
(Ⅰ)求證: 面 ;
(Ⅱ)在邊上找一點,使∥面,
并求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com