【題目】某市為了解各!秶鴮W(xué)》課程的教學(xué)效果,組織全市各學(xué)校高二年級全體學(xué)生參加了國學(xué)知識水平測試,測試成績從高到低依次分為AB、C、D四個等級.隨機調(diào)閱了甲、乙兩所學(xué)校各60名學(xué)生的成績,得到如下的分布圖:

)試確定圖中的值;

)若將等級AB、CD依次按照分、80分、60分、50分轉(zhuǎn)換成分?jǐn)?shù),試分別估計兩校學(xué)生國學(xué)成績的均值;

)從兩校獲得A等級的同學(xué)中按比例抽取5人參加集訓(xùn),集訓(xùn)后由于成績相當(dāng),決定從中隨機選2人代表本市參加省級比賽,求兩人來自同一學(xué)校的概率.

【答案】(

【解析】試題分析:()由頻數(shù)分布條形圖得由頻率分布條形圖得)由平均數(shù)計算公式得:甲校的平均值為;乙校的平均值為)由分層抽樣得甲校抽2人,乙校抽3人,利用枚舉法得從中隨機選2人一共有10種基本事件,其中兩人來自同一學(xué)校包含4種基本事件,因此所求概率為

試題解析:( ……………………2

)由數(shù)據(jù)可得甲校的平均值為

乙校的平均值為…………………………6

)由樣本數(shù)據(jù)可知集訓(xùn)的5人中甲校抽2人,分別記作;乙校抽3人,分別記作

5人中任選2人一共有10個基本事件; ;

其中2人來自同一學(xué)校包含

所以所求事件的概率……………………12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的頂點邊上的中線所在直線方程為邊上的高所在直線的方程為.

(1)求的頂點的坐標(biāo);

(2)若圓經(jīng)過不同三點,且斜率為的直線與圓相切與點,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線與直線)交于,兩點.

1)當(dāng)時,分別求在點處的切線方程;

2軸上是否存在點,使得當(dāng)變動時,總有?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的兩個焦點為, ,離心率為,點 在橢圓上, 在線段上,且的周長等于

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過圓 上任意一點作橢圓的兩條切線與圓交于點 ,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,四邊形是直角梯形, 底面, 的中點, 點在上,且.

(1)證明: 平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中, , ,沿對角線折起,使點移到點,且在平面上的射影恰好落在上.

(1)求證: ;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細心程度的關(guān)系,在本校隨機調(diào)查了100名學(xué)生進行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的60名學(xué)生中有45人比較細心,另外15人比較粗心;在數(shù)學(xué)成績不及格的40名學(xué)生中有10人比較細心,另外30人比較粗心.

(1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表;

數(shù)學(xué)成績及格

數(shù)學(xué)成績不及格

合計

比較細心

45

比較粗心

合計

60

100

(2)能否在犯錯誤的概率不超過0.001的前提下認為學(xué)生的數(shù)學(xué)成績與細心程度有關(guān)系?

參考數(shù)據(jù):獨立檢驗隨機變量的臨界值參考表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

處的切線與直線平行,求的值;

討論函數(shù)的單調(diào)區(qū)間;

若函數(shù)的圖象與x軸交于A,B兩點,線段AB中點的橫坐標(biāo)為,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分15分)已知橢圓過點,離心率為.

)求橢圓的標(biāo)準(zhǔn)方程;

)設(shè)分別為橢圓的左、右焦點,過的直線與橢圓交于不同兩點,記的內(nèi)切圓的面積為,求當(dāng)取最大值時直線的方程,并求出最大值

查看答案和解析>>

同步練習(xí)冊答案