【題目】已知橢圓E的中心在原點(diǎn),焦點(diǎn)在x軸上,橢圓的左頂點(diǎn)坐標(biāo)為,離心率為

求橢圓E的方程;

過點(diǎn)作直線lEP、Q兩點(diǎn),試問:在x軸上是否存在一個(gè)定點(diǎn)M,使為定值?若存在,求出這個(gè)定點(diǎn)M的坐標(biāo);若不存在,請說明理由.

【答案】1;2.

【解析】

設(shè)出橢圓的方程,得到關(guān)于a,c的方程組,解出即可求出橢圓方程;

假設(shè)存在符合條件的點(diǎn),設(shè),,求出,通過討論當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為,聯(lián)立直線和橢圓的方程,結(jié)合韋達(dá)定理求出m的值,當(dāng)直線l的斜率不存在時(shí),求出直線方程,代入檢驗(yàn)即確定.

設(shè)橢圓E的方程為

由已知得,解得:,

所以

所以橢圓E的方程為

假設(shè)存在符合條件的點(diǎn)

設(shè),

,,

,

當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為,

,得:,

,

,

對于任意的k值,上式為定值,

,解得:,

此時(shí),為定值;

當(dāng)直線l的斜率不存在時(shí),

直線l,,,

,得為定值,

綜合知,符合條件的點(diǎn)M存在,其坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某百貨商場舉行年終慶典,推出以下兩種優(yōu)惠方案:

方案一:單筆消費(fèi)每滿200元立減50元,可累計(jì);

方案二:單筆消費(fèi)滿200元可參與一次抽獎(jiǎng)活動(dòng),抽獎(jiǎng)規(guī)則如下:從裝有6個(gè)小球(其中3個(gè)紅球3個(gè)白球,它們除顏色外完全相同)的盒子中隨機(jī)摸出3個(gè)小球,若摸到3個(gè)紅球則按原價(jià)的5折付款,若摸到2個(gè)紅球則按原價(jià)的7折付款,若摸到1個(gè)紅球則按原價(jià)的8折付款,若未摸到紅球按原價(jià)的9折付款。

單筆消費(fèi)不低于200元的顧客可從中任選一種優(yōu)惠方案。

I)某顧客購買一件300元的商品,若他選擇優(yōu)惠方案二,求該顧客最好終支付金額不超過250元的概率。

II)若某顧客的購物金額為210元,請用所學(xué)概率知識(shí)分析他選擇哪一種優(yōu)惠方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱柱中,已知AB=2, ,

E、F分別為、上的點(diǎn),且.

(1)求證:BE⊥平面ACF;

(2)求點(diǎn)E到平面ACF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4男3女站成一排,求滿足下列條件的排法共有多少種?

任何兩名女生都不相鄰,有多少種排法?

男甲不在首位,男乙不在末位,有多少種排法?

男生甲、乙、丙順序一定,有多少種排法?

男甲在男乙的左邊不一定相鄰有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),一個(gè)長軸端點(diǎn)為,離心率,過P分別作斜率為的直線PA,PB,交橢圓于點(diǎn)A,B

1求橢圓的方程;

2,則直線AB是否經(jīng)過某一定點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其圖象在點(diǎn)處切線的斜率為-3.

(1)求關(guān)系式;

(2)求函數(shù)的單調(diào)區(qū)間(用只含有的式子表示);

(3)當(dāng)時(shí),令,設(shè)是函數(shù)的兩個(gè)零點(diǎn), 的等差中項(xiàng),求證: 為函數(shù)的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2019·吉林期末]一個(gè)袋中裝有6個(gè)大小形狀完全相同的球,球的編號(hào)分別為1,2,3,4,5,6.

(1)從袋中隨機(jī)抽取兩個(gè)球,求取出的球的編號(hào)之和為6的概率;

(2)先后有放回地隨機(jī)抽取兩個(gè)球,兩次取的球的編號(hào)分別記為,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, , , 中點(diǎn)(如圖1).將沿折起到圖2中的位置,得到四棱錐.

(1)將沿折起的過程中, 平面是否成立?并證明你的結(jié)論;

(2)若與平面所成的角為60°,且為銳角三角形,求平面和平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016雙節(jié)期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們在某段高速公路的車速分成六段: , , 后得到如圖的頻率分布直方圖.

I)某調(diào)查公司在采樣中,用到的是什么抽樣方法?

II)求這40輛小型車輛車速的眾數(shù)、中位數(shù)及平均數(shù)的估計(jì)值;

(III)若從車速在的車輛中任抽取2輛,求車速在的車輛至少有一輛的概率.

查看答案和解析>>

同步練習(xí)冊答案