【題目】在平行四邊形中,過點的直線與線段分別相交于點,若.

1)求關(guān)于的函數(shù)解析式;

2)定義函數(shù),點列在函數(shù)的圖像上,且數(shù)列是以1為首項,為公比的等比數(shù)列,為原點,令,是否存在點,使得?若存在,求出點的坐標,若不存在,說明理由.

3)設(shè)函數(shù)上的偶函數(shù),當時,函數(shù)的圖像關(guān)于直線對稱,當方程上有兩個不同的實數(shù)解時,求實數(shù)的取值范圍.

【答案】1;(2)存在,;(3

【解析】

1)根據(jù)平行四邊形性質(zhì)得到比例關(guān)系得到答案.

2)先計算,得到,利用向量垂直計算得到答案.

3)先判斷周期為,得到的函數(shù)表達式,畫出函數(shù)圖像,根據(jù)圖像計算得到答案.

1)利用平行四邊形性質(zhì)得到,因為

2,

故存在使

3的圖像關(guān)于直線對稱,函數(shù)上的偶函數(shù)

,周期為

時,

過定點 如圖所示,畫出函數(shù)圖像:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】F1,F2是橢圓C1和雙曲線C2的公共焦點,e1,e2分別為曲線C1,C2的離心率,P為曲線C1,C2的一個公共點,若,且,則e1_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】與正方體ABCD—A1B1C1D1的三條棱AB、CC1A1D1所在直線的距離相等的點( )

A.有且只有1B.有且只有2

C.有且只有3D.有無數(shù)個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,圓C:x2+y2+4x-2y+m=0與直線相切.

(1)求圓C的方程;

(2)若圓C上有兩點M,N關(guān)于直線x+2y=0對稱,且,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三個村莊AB,C構(gòu)成一個三角形,且AB=5千米,BC=12千米,AC=13千米.為了方便市民生活,現(xiàn)在ABC內(nèi)任取一點M建一大型生活超市,則MAB,C的距離都不小于2千米的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),

(1)若曲線在點處的切線與軸平行,求;

(2)當時,函數(shù)的圖象恒在軸上方,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等比數(shù)列,等差數(shù)列滿足,且的等比中項.

(1)求數(shù)列的通項公式;

(2)設(shè),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,設(shè),且,記;

(1)設(shè),其中,試求的單調(diào)區(qū)間;

(2)試判斷弦的斜率的大小關(guān)系,并證明;

(3)證明:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,,E為AB的中點.將沿DE翻折,得到四棱錐.設(shè)的中點為M,在翻折過程中,有下列三個命題:

①總有平面;

②線段BM的長為定值;

③存在某個位置,使DE與所成的角為90°.

其中正確的命題是_______.(寫出所有正確命題的序號)

查看答案和解析>>

同步練習冊答案