(本題滿分12分)
已知函數(shù) )
(1)若從集合中任取一個元素,從集合中任取一個元素,求方程恰有兩個不相等實根的概率;
(2)若從區(qū)間中任取一個數(shù),從區(qū)間中任取一個數(shù),求方程沒有實根的概率.

(1)(2)

解析試題分析:(1) ∵ 取值的情況是:

(0,3),(1,3),(2,3),(3,3)其中第一個數(shù)表示的取值,第二個數(shù)表示 的取值.
即基本事件總數(shù)為16
設(shè)“方程恰有兩個不相等的實根”為事件
當(dāng)時,方程恰有兩個不相等實根即為b>不等于零
當(dāng)b>時,取值的情況有(1,2),(1,3),(2,3)
包含的基本事件數(shù)為3,
∴方程恰有兩個不相等實根的概率. …………………6分
(2) ∵從區(qū)間中任取一個數(shù),從區(qū)間中任取一個數(shù),
則試驗的全部結(jié)果構(gòu)成區(qū)域         
這是一個矩形區(qū)域,其面積          ……………………8分
設(shè)“方程沒有實根”為事件B,則事件B所構(gòu)成的區(qū)域為其面積…………10分
由幾何概型的概率計算公式可得:
方程沒有實根的概率 .  …………………12分
考點:古典概型概率與幾何概型概率
點評:古典概型概率要找到所有的基本事件種數(shù)及滿足題意要求的基本事件種數(shù),然后求其比值;幾何概型概率要求出對應(yīng)的面積大小,然后求其面積比

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在人群流量較大的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢。
(1)摸出的3個球為白球的概率是多少?  
(2)摸出的3個球為2個黃球1個白球的概率是多少?
(3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙等五名奧運志愿者被隨機地分到四個不同的崗位服務(wù),每個崗位至少有一名志愿者.(Ⅰ)求甲、乙兩人同時參加崗位服務(wù)的概率;(Ⅱ)求甲、乙兩人不在同一個崗位服務(wù)的概率;(Ⅲ)設(shè)隨機變量為這五名志愿者中參加崗位服務(wù)的人數(shù), 可取何值?請求出相應(yīng)的值的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
若盒中裝有同一型號的燈泡共10只,其中有8只合格品,2只次品。
(Ⅰ)某工人師傅有放回地連續(xù)從該盒中取燈泡3次,每次取一只燈泡,求2次取到次品的概率;
(Ⅱ)某工人師傅用該盒中的燈泡去更換會議室的一只已壞燈泡,每次從中取一燈泡,若是正品則用它更換已壞燈泡,若是次品則將其報廢(不再放回原盒中),求成功更換會議室的已壞燈泡所用燈泡只數(shù)的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分) 某工廠組織工人參加上崗測試,每位測試者最多有三次機會,一旦某次測試通過,便可上崗工作,不再參加以后的測試;否則就一直測試到第三次為止。設(shè)每位工人每次測試通過的概率依次為0.2,0.5,0.5,每次測試相互獨立。
(1)求工人甲在這次上崗測試中參加考試次數(shù)為2、3的概率分別是多少?
(2)若有4位工人參加這次測試,求至少有一人不能上崗的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋中有大小、形狀相同的紅、黑球各一個,現(xiàn)一次有放回地隨機摸取3次,每次摸取一個球
(Ⅰ)試問:一共有多少種不同的結(jié)果?請列出所有可能的結(jié)果;
(Ⅱ)若摸到紅球時得2分,摸到黑球時得1分,求3次摸球所得總分為5的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)關(guān)于的一元二次方程.
(1)若,都是從集合中任取的數(shù)字,求方程有實根的概率;
(2)若是從區(qū)間[0,4]中任取的數(shù)字,是從區(qū)間[1,4]中任取的數(shù)字,求方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)某項計算機考試按科目A、科目B依次進行,只有大拿感科目A成績合格時,才可繼續(xù)參加科目B的考試,已知每個科目只允許有一次補考機會,兩個科目均合格方快獲得證書,現(xiàn)某人參加這項考試,科目A每次考試成績合格的概率為,科目B每次考試合格的概率為,假設(shè)各次考試合格與否均互不影響.
(Ⅰ)求他不需要補考就可獲得證書的概率;
(Ⅱ)在這次考試過程中,假設(shè)他不放棄所有的考試機會,記他參加考試的次數(shù)為,求隨即變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)為了解初三學(xué)生女生身高情況,某中學(xué)對初三女生身高進行了一次抽樣調(diào)查,根據(jù)所得數(shù)據(jù)整理后列出了頻率分布表如下:
組 別       頻數(shù)   頻率   
145.5~149.5      1       0.02   
149.5~153.5      4       0.08   
153.5~157.5    22     0.44   
157.5~161.5      13      0.26   
161.5~165.5      8       0.16   
165.5~169.5     m       n  
合 計        M       N  
(1)求出表中所表示的數(shù)m,n,M,N分別是多少?
(2)畫出頻率分布直方圖和頻率分布折線圖.
(3)若要從中再用分層抽樣方法抽出10人作進一步調(diào)查,則身高在[153.5,161.5)范圍內(nèi)的應(yīng)抽出多少人?
(4)根據(jù)頻率分布直方圖,分別求出被測女生身高的眾數(shù),中位數(shù)和平均數(shù)?(結(jié)果保留一位小數(shù))

查看答案和解析>>

同步練習(xí)冊答案