A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性可得-π+φ=kπ,k∈z,由此根據(jù)|φ|<$\frac{π}{2}$求得φ的值.得到函數(shù)解析式即可求最值.
解答 解:函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向右平移$\frac{π}{6}$個(gè)單位后,得到函數(shù)y=sin[2(x-$\frac{π}{6}$)+φ]=sin(2x-π+φ)的圖象,
再根據(jù)所得圖象關(guān)于原點(diǎn)對稱,可得-$\frac{π}{3}$+φ=kπ,k∈z,
∵|φ|<$\frac{π}{2}$
∴φ=$\frac{π}{3}$,f(x)=sin(2x-$\frac{π}{3}$),
由題意x∈[0,$\frac{π}{4}$],得2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{π}{6}$],
∴sin(2x-$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$]
∴函數(shù)f(x)=sin(2x-$\frac{π}{3}$)在區(qū)間[0,$\frac{π}{4}$]的最小值為-$\frac{\sqrt{3}}{2}$.
故選:A.
點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,考查了正弦函數(shù)最值的求法,解題的關(guān)鍵是熟練掌握正弦函數(shù)的性質(zhì),能根據(jù)正弦函數(shù)的性質(zhì)求最值,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,2] | B. | [-10,10] | C. | (-∞,-10]∪[10,+∞) | D. | (-∞,-2]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,2] | B. | (-1,1) | C. | ∅ | D. | (-1,1] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com