分析 (Ⅰ)先求出BC所在直線的斜率,根據(jù)垂直得出BC邊上的高所在直線的斜率,由點(diǎn)斜式寫(xiě)出直線方程,并化為一般式.
(Ⅱ)設(shè)所求的直線l方程為$\frac{x}{a}$+$\frac{y}{-a}$=1或y=kx.把點(diǎn)B(2,1)代入上述方程即可得出.
解答 解:(Ⅰ)因?yàn)橹本BC的斜率kBC=$\frac{1-3}{-2-2}$=-$\frac{1}{2}$.
所以BC邊上的高線AH的斜率kAH=-$\frac{1}{kBC}$=2,
所以直線AH的方程為y-0=2(x+3),即2x-y+6=0.
(Ⅱ)若直線l的橫、縱截距均為零,則直線l過(guò)原點(diǎn).又因?yàn)橹本l過(guò)點(diǎn)B(2,1),所以直線l的方程為y=$\frac{1}{2}$x,即x-2y=0.
若直線l的橫、縱截距均不為零,設(shè)直線l的方程為$\frac{x}{a}$+$\frac{y}{-a}$=1,則$\frac{2}{a}$+$\frac{1}{-a}$=1,解得a=1.此時(shí)直線l的方程為x-y-1=0.
綜上,直線l的方程為x-2y=0或x-y-1=0.
點(diǎn)評(píng) 本題考查了待定系數(shù)法求直線的方程,考查了直線方程的截距式,點(diǎn)斜式求直線方程的方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m>4 | B. | m≥4 | C. | m>-2 | D. | -2<m<4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2016∈A0 | B. | -1∈A3 | ||
C. | a∈Ak,b∈Ak,則a-b∈A0 | D. | a+b∈A3,則a∈A1,b∈A2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -5 | C. | -5或1 | D. | 5或-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (0,$\frac{1}{3}$) | C. | [$\frac{1}{7}$,$\frac{1}{3}$) | D. | [$\frac{1}{7}$,1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com