【題目】定義在上的函數(shù)滿足.當(dāng)時(shí),,當(dāng)時(shí),,則f(1)+f(2)+…+f(2015)=( )
A. 333 B. 336 C. 1678 D. 2015
【答案】B
【解析】分析:由已知得到函數(shù)的周期為6,找到與2015函數(shù)值相等的(-3,3)的自變量,按照周期求值.
詳解:由已知函數(shù)周期為6,并且2015=6×335+5,
并且f(1)=1,
f(2)=2,
f(3)=f(-3+6)=f(-3)=-(-3+2)2=-1,
f(4)=f(-2+6)=f(-2)=0,
f(5)=f(-1+6)=f(-1)=-1,
f(6)=f(0)=0,
所以f(1)+f(2)+…+f(6)=1,
所以f(1)+f(2)+…+f(2015)=1×335+f(1)+f(2)+f(3)+f(4)+f(5)=335+1=336;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin+cos,x∈R.
(1)求函數(shù)f(x)的最小正周期,并求函數(shù)f(x)在x∈[﹣2π,2π]上的單調(diào)遞增區(qū)間;
(2)函數(shù)f(x)=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換可以得到函數(shù)f(x)的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)四面體的六條棱的長(zhǎng)分別為1,1,1,1, 和a,且長(zhǎng)為a的棱與長(zhǎng)為 的棱異面,則a的取值范圍是( )
A.(0, )
B.(0, )
C.(1, )
D.(1, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問110名性別不同的中學(xué)生是否愛好運(yùn)動(dòng),得到如下的列聯(lián)表:
男 | 女 | 總計(jì) | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由得,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是 ( )
A. 在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為“愛好運(yùn)動(dòng)與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為 “愛好運(yùn)動(dòng)與性別有關(guān)”
C. 在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為“愛好運(yùn)動(dòng)與性別無關(guān)”
D. 有以上的把握認(rèn)為“愛好運(yùn)動(dòng)與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:曲線C上的點(diǎn)到直線l的距離的最小值稱為曲線C到直線l的距離,已知曲線C1:y=x2+a到直線l:y=x的距離等于曲線C2:x2+(y+4)2=2到直線l:y=x的距離,則實(shí)數(shù)a= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體ABCDEF中,點(diǎn)O是矩形ABCD的對(duì)角線的交點(diǎn),面CDE是等邊三角形,棱。
(1)證明FO∥平面CDE;
(2)設(shè)BC=CD,證明EO⊥平面CDE。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,,,,點(diǎn)Q在棱AB上.
(1)證明:平面.
(2)若三棱錐的體積為,求點(diǎn)B到平面PDQ的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com