三棱錐A-BCD中,平面ABD與平面BCD的法向量分別為
n1
n2
,若<
n1
n2
>=
π
3
,則二面角A-BD-C的大小為(  )
分析:由于二面角的范圍是[0,π],并且二面角的大小與其兩個(gè)半平面的法向量的夾角相等或互補(bǔ)即可得出.
解答:解:∵二面角的范圍是[0,π],且<
n1
,
n2
>=
π
3
,
∴二面角A-BD-C的大小為
π
3
3

故選C.
點(diǎn)評(píng):熟練掌握二面角的范圍是[0,π]及二面角的大小與其兩個(gè)半平面的法向量的夾角相等或互補(bǔ)等是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐A-BCD中,E、F、G、H分別是邊AB、BC、CD、DA的中點(diǎn).
(1)求證:四邊形EFGH是平行四邊形;
(2)若AC=BD,求證:四邊形EFGH是菱形;
(3)當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是正方形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正三棱錐A-BCD中,E,F(xiàn)分別是AB,BC的中點(diǎn),EF⊥DE,且BC=1,則點(diǎn)A到平面BCD的距離為
6
6
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐A-BCD中,AD⊥平面ABC,∠BAC=120°,且AB=AC=AD=2,點(diǎn)E在BC上,且AE⊥AC.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求點(diǎn)B到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在三棱錐A-BCD中,M,N分別為AB,CD的中點(diǎn) 則下列結(jié)論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點(diǎn),且MN=PQ.
(1)求證:四邊形MNPQ為平行四邊形;
(2)試在直線AC上找一點(diǎn)F,使得MF⊥AD.

查看答案和解析>>

同步練習(xí)冊答案