(14分)今有甲、乙兩個籃球隊進(jìn)行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊在每場比賽中獲勝的概率都是.并記需要比賽的場數(shù)為ξ.
(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列與數(shù)學(xué)期望.
.解:(Ⅰ)依題意可知,ξ的可能取值最小為4.
當(dāng)ξ=4時,整個比賽只需比賽4場即結(jié)束,這意味著甲連勝4場,或乙連勝4場,于是,由互斥事件的概率計算公式,可得
P(ξ=4)=2=.……………..2分
當(dāng)ξ=5時,需要比賽5場整個比賽結(jié)束,意味著甲在第5場獲勝,前4場中有3場獲勝,或者乙在第5場獲勝,前4場中有3場獲勝.顯然這兩種情況是互斥的,于是,
P(ξ=5)=2=,…………….4分
∴P(ξ>5)=1-[P(ξ=4)+P(ξ=5)]=1-[+]=.…………….6分
即ξ>5的概率為.
(Ⅱ)∵ξ的可能取值為4,5,6,7,仿照(Ⅰ),可得
P(ξ=6)=2=,………………..8分
P(ξ=7)=2=,………………..10分
∴ξ的分布列為:
………………………………………………………..12分[
ξ的數(shù)學(xué)期望為:Eξ=4·+5·+6·+7·=.……………14分
解析
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省2012屆高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
(14分)今有甲、乙兩個籃球隊進(jìn)行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊在每場比賽中獲勝的概率都是.并記需要比賽的場數(shù)為ξ.
(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:解答題
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州市江陵實驗高中高二(上)綜合測試數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com