【題目】已知拋物線:的準(zhǔn)線經(jīng)過點(diǎn),過的焦點(diǎn)作兩條互相垂直的直線,,直線與交于,兩點(diǎn),直線與交于,兩點(diǎn),則下列結(jié)論正確的是( )
A.B.的最小值為16
C.四邊形的面積的最小值為64D.若直線的斜率為2,則
【答案】ABD
【解析】
由準(zhǔn)線的概念可得,設(shè)直線的斜率為得直線的方程,與拋物線方程聯(lián)立方程組消元后,應(yīng)用韋達(dá)定理得,由拋物線焦點(diǎn)弦長公式可得,直線斜率為,同理可得,利用基本不等式可判斷B,C,計算,代入可判斷D.
由題可知,所以,故A正確.
設(shè)直線的斜率為,則直線的斜率為.設(shè),,
,,直線:,直線:.聯(lián)立
,消去整理得,所以,
.所以.
同理,
從而,當(dāng)且僅當(dāng)時等號成立,故B正確.
因?yàn)?/span>,
當(dāng)且僅當(dāng)時等號成立,故C錯誤.
,將
,與,代入上式,得,所以,故D正確.
故選:ABD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,m,nR.
(1)當(dāng)m=0時,求函數(shù)的極值;
(2)當(dāng)n=0時,函數(shù)在(0,)上為單調(diào)函數(shù),求m的取值范圍;
(3)當(dāng)n>0時,判斷是否存在正數(shù)m,使得函數(shù)與有相同的零點(diǎn),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A、B兩同學(xué)參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間,他們參加了8次測驗(yàn),成績(單位:分)記錄如下:
A 71 62 72 76 63 70 85 83
B 73 84 75 73 78 76 85
B同學(xué)的成績不慎被墨跡污染(,分別用m,n表示).
(1)用莖葉圖表示這兩組數(shù)據(jù),現(xiàn)從A、B兩同學(xué)中選派一人去參加數(shù)學(xué)競賽,你認(rèn)為選派誰更好?請說明理由(不用計算);
(2)若B同學(xué)的平均分為78,方差,求m,n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線E的極坐標(biāo)方程為,直線l的參數(shù)方程為(t為參數(shù)).點(diǎn)P為曲線E上的動點(diǎn),點(diǎn)Q為線段OP的中點(diǎn).
(1)求點(diǎn)Q的軌跡(曲線C)的直角坐標(biāo)方程;
(2)若直線l交曲線C于A,B兩點(diǎn),點(diǎn)恰好為線段AB的三等分點(diǎn),求直線l的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,D為線段BC(端點(diǎn)除外)上一動點(diǎn).現(xiàn)將沿線段AD折起至,使二面角的大小為120°,則在點(diǎn)D的移動過程中,下列說法錯誤的是( )
A.不存在點(diǎn),使得
B.點(diǎn)在平面上的投影軌跡是一段圓弧
C.與平面所成角的余弦值的取值范圍是
D.線段的最小值是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線交拋物線于、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),過線段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線,使得直線與拋物線在點(diǎn)處的切線平行,設(shè)直線與拋物線交于、兩點(diǎn).
(1)記直線、的斜率分別為、,證明:;
(2)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),則函數(shù)y=f(f(x))﹣1的所有零點(diǎn)構(gòu)成的集合為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中e是自然對數(shù)的底數(shù).
(1)若,證明:;
(2)若時,都有,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共14分)已知動點(diǎn)在角的終邊上.
(1)若,求實(shí)數(shù)的值;
(2)記,試用將S表示出來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com