【題目】已知的內(nèi)角、、的對邊分別為、、,且.
(Ⅰ)求;
(Ⅱ)若,,如圖,為線段上一點,且,求的長.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)根據(jù)正弦定理和余弦定理進行求解即可.
(Ⅱ)根據(jù)(Ⅰ)式和余弦定理可求得,然后根據(jù)余弦定理可求得,進而可以利用輔助角公式求出,進而求出和.
(Ⅰ)解法1:根據(jù)正弦定理,由得
,
整理得.
因為,所以.
解法2:由得,
由余弦定理得:,
整理得,.
所以.
(Ⅱ)解法1:在中,由余弦定理得:,
整理得,解得或(舍),即.
在中,由(1)結(jié)論可知:.
由正弦定理得,所以,
由(Ⅰ)結(jié)論可得出為銳角,所以,,
在中,.
解法2:在中,由余弦定理得:,
將(Ⅰ)中所求代入整理得:,解得或(舍),即.
在中,由余弦定理可知:,
所以,,
在中,.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)sincos(ω>0),如果存在實數(shù)x0,使得對任意的實數(shù)x,都有f(x0﹣2020)≤f(x)≤f(x0)成立,則ω的最大值為( )
A.2020B.4040C.1010D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,直線l的極坐標方程為ρcosθ=4,曲線C的極坐標方程為ρ=2cosθ+2sinθ,以極點為坐標原點O,極軸為x軸的正半軸建立直角坐標系,射線l':y=kx(x≥0,0<k<1)與曲線C交于O,M兩點.
(Ⅰ)寫出直線l的直角坐標方程以及曲線C的參數(shù)方程;
(Ⅱ)若射線l′與直線l交于點N,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知離心率為的橢圓:的上下頂點分別為,,直線:與橢圓相交于,兩點,與相交于點 .
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若,求面積的最大值;
(Ⅲ)設(shè)直線,相交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某疾病有甲、乙兩種類型,對甲型患者的有效治療只能通過注射藥物Y,而乙型患者可以服藥物A進行有效治療,對該疾病患者可以通過藥物A的臨床檢驗確定甲型或乙型.檢驗的方法是:如果患者利用藥物A完成第一個療程有效,就可以確定是乙型;否則進行第二個療程,如果完成第二個療程有效,也可以確定是乙型,否則確定是甲型.為了掌握這種疾病患者中甲型、乙型所占比例,隨機抽取100名患者作為樣本通過藥物A進行臨床檢驗,檢驗結(jié)果是:樣本中完成第二個療程有效的患者是完成第一個療程有效的患者的60%,且最終確定為甲型患者的有36人.
(1)根據(jù)檢驗結(jié)果,將頻率視作概率,在利用藥物A完成第一個療程無效的患者中仼選3人,求其中甲型患者恰為2人的概率;
(2)該疾病的患者通過治療,使血漿中某物質(zhì)t的濃度降低到或更低時,就認為已經(jīng)達到治愈指標.為了確定藥物Y對甲型患者的療效,需了解療程次數(shù)x(單位:次)對患者血漿中t的濃度(單位:)的影響.在甲型患者中抽取一個有代表性的樣本,利用藥物Y進行5個療程,每個療程完成后對每個個體抽取相同容量的血漿進行分析,并對療程數(shù)和每個療程后樣本血漿中t的平均濃度的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
3 | 11.0 | 0.46 | 262.5 | 30.1 | 55 | 1.458 |
/span>
上表中,.
①根據(jù)散點圖直接判斷(不必說明理由),與哪一個適宜作為甲型患者血漿中t的平均濃度y關(guān)于療程次數(shù)x的回歸方程類型?并根據(jù)表中數(shù)據(jù)建立y關(guān)于x的回歸方程.
②患者在享受基本醫(yī)療保險及政府專項補助后,自己需承擔的費用z(單位:元)與x,y的關(guān)系為.在達到治愈指標的前提下,甲型患者完成多少個療程自己承擔的費用最低?
對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com