【題目】在各項都不相等的等差數(shù)列{an}中,a1,a2是關(guān)于x的方程x2-7a4x+18a3=0的兩個實根.

(1) 試判斷-22是否在數(shù)列{an}中;

(2) 求數(shù)列{an}的前n項和Sn的最大值.

【答案】(1)22不在數(shù)列{an}中;(2)30.

【解析】試題分析:(1)由題意得到,設(shè)等差數(shù)列{an}的公差為d(d≠0),化為關(guān)于a1d的方程組求得首項和公差,求得通項公式,即可判斷-22不是數(shù)列{an}中的項;
(2)寫出等差數(shù)列的前n項和,利用二次函數(shù)求得數(shù)列{an}的前n項和Sn的最大值.

試題解析:

(1) 依題意,

解得

因為數(shù)列{an}中各項都不相等,所以d0,所以不符舍去,因此ana1(n1)d153n.

153n=-22,解得n.

因為不是正整數(shù),所以-22不在數(shù)列{an}中.

(2) (1)an153n,

解得4n5,

所以n45,Sn取最大值30.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的2×2列聯(lián)表.已知從全部210人中隨機(jī)抽取1人為優(yōu)秀的概率為.

(1)請完成上面的2×2列聯(lián)表,并判斷若按99%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)”;

(2)從全部210人中有放回地抽取3次,每次抽取1人,記被抽取的3人中的優(yōu)秀人數(shù)為ξ,若每次抽取的結(jié)果是相互獨立的,求ξ的分布列及數(shù)學(xué)期望E(ξ).

P(K2k0)

0.05

0.01

k0

3.841

6.635

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.

(1)U(AB);

(2)若集合C={x|2xa>0},滿足BCC,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)在區(qū)間上單調(diào)遞增;函數(shù)在其定義域上存在極值.

(1)若為真命題,求實數(shù)的取值范圍;

(2)如果為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列集合間的關(guān)系:

(1)A{x|x32}B{x|2x5≥0};

(2)A{xZ|1≤x<3}B{x|x|y|,yA}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進(jìn)行分析,

規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,

得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.

優(yōu)秀

非優(yōu)秀

合計

甲班

10

乙班

30

合計

110

(1)請完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為成績與班級有關(guān)系

(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。

參考公式與臨界值表:。

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合其中,集合.

(1)若,求實數(shù)的取值范圍;

(2)若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知函數(shù)f(x)的定義域為[0,1],求f(x2+1)的定義域;

(2)已知f()的定義域為[0,3],求f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù) 的圖象如圖

給出下列四個命題:

①方程有且僅有個根;②方程有且僅有個根;

③方程有且僅有個根;④方程有且僅有個根;

其中正確命題的序號是( )

A. ①②③ B. ②③④ C. ①②④ D. ①③④

查看答案和解析>>

同步練習(xí)冊答案