選修4-1:幾何證明選講
如圖,以Rt△ABC的一條直角邊AB直徑作圓O,交斜邊AC于P點(diǎn),過(guò)P點(diǎn)作圓O的切線(xiàn)交BC于E點(diǎn).求證:BE=CE.

【答案】分析:由AB是圓O的直徑可得BP⊥AC,由弦切角定理及切線(xiàn)的性質(zhì)可知∠EPB=∠EBP=∠BAP,即證BE=PE,只要證明∠CPE=∠PCE,即正PE=CE,即可
解答:證明:連接BP,
∵AB是圓O的直徑
由圓周角定理可得,BP⊥AC…(3分)
又∵EP、EB都是圓O的切線(xiàn),
由切線(xiàn)的性質(zhì)可得,∠EPB=∠EBP,且BE=PE
根據(jù)弦切角定理可知,∠EPB=∠BAP(6分)
又∠CPE+∠EPB=∠PCE+∠BAP=90°
∴∠CPE=∠PCE,
∴PE=CE
∴BE=CE…(10分)
點(diǎn)評(píng):本題主要考查了圓的切線(xiàn)性質(zhì)及弦切角定理的綜合應(yīng)用,解答此類(lèi)問(wèn)題的關(guān)鍵是靈活應(yīng)用圓的性質(zhì)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點(diǎn)H,HB=2.
(1)求DE的長(zhǎng);
(2)延長(zhǎng)ED到P,過(guò)P作圓O的切線(xiàn),切點(diǎn)為C,若PC=2
5
,求PD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點(diǎn)A,D為PA的中點(diǎn),
過(guò)點(diǎn)D引割線(xiàn)交⊙O于B,C兩點(diǎn),求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線(xiàn)l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線(xiàn)PA,切點(diǎn)為A,M為PA的中點(diǎn),過(guò)點(diǎn)M引圓O的割線(xiàn)交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線(xiàn)AB經(jīng)過(guò)圓上O的點(diǎn)C,并且OA=OB,CA=CB,圓O交于直線(xiàn)OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長(zhǎng)BC到點(diǎn)D,使得CD=AC,連結(jié)AD交圓O于點(diǎn)E,連結(jié)BE與AC交于點(diǎn)F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案