【題目】已知a,b,c分別為△ABC中角A,B,C的對邊,函數(shù) 且f(A)=5.
(1)求角A的大。
(2)若a=2,求△ABC面積的最大值.

【答案】
(1)解:由題意可得:

=3+ sin2A+cos2A+1=4+2sin(2A+ ),

∴sin(2A+ )= ,∵A∈(0,π),

∴2A+ ∈( ),∴2A+ = ,∴A=


(2)解:由余弦定理可得: ,

即4=b2+c2﹣bc≥bc(當且僅當b=c=2時“=”成立),即bc≤4,

,

故△ABC面積的最大值是


【解析】(1)利用三角恒等變換求得f(A)的解析式,由f(A)=5求得 sin(2A+ ) 的值,從而求得2A+ 的值,可得A的值.(2)利用余弦定理,基本不等式,求得bc的最大值,可得△ABC面積 bcsinA的最大值.
【考點精析】利用余弦定理的定義對題目進行判斷即可得到答案,需要熟知余弦定理:;;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四面體ABCD的頂點都在球O表面上,且AB=BC=AC=2 ,DA=DB=DC=2,過AD作相互垂直的平面α、β,若平面α、β截球O所得截面分別為圓M、N,則(
A.MN的長度是定值
B.MN長度的最小值是2
C.圓M面積的最小值是2π
D.圓M、N的面積和是定值8π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓E: (a>b>0)過點( ,1),且與直線 x+2y﹣4=0相切.
(1)求橢圓E的方程;
(2)若橢圓E與x軸交于M、N兩點,橢圓E內(nèi)部的動點P使|PM|、|PO|、|PN|成等比數(shù)列,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】化簡

1

2

【答案】(1) ;(2) .

【解析】試題分析:(1)切化弦可得三角函數(shù)式的值為-1

(2)結(jié)合三角函數(shù)的性質(zhì)可得三角函數(shù)式的值為

試題解析:

(1)tan70°cos10°( tan20°﹣1)

=cot20°cos10°( ﹣1)

=cot20°cos10°(

=×cos10°×(

=×cos10°×(

=×(﹣

=﹣1

(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°

=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.

同理可得(1+tan2°)(1+tan43°)

=(1+tan3°)(1+tan42°)

=(1+tan4°)(1+tan41°)=…=2,

=

點睛:三角函數(shù)式的化簡要遵循“三看”原則:一看角,這是重要一環(huán),通過看角之間的差別與聯(lián)系,把角進行合理的拆分,從而正確使用公式 ;二看函數(shù)名稱,看函數(shù)名稱之間的差異,從而確定使用的公式,常見的有切化弦;三看結(jié)構(gòu)特征,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,如遇到分式要通分等.

型】解答
結(jié)束】
18

【題目】平面內(nèi)給定三個向量

1)求

2)求滿足的實數(shù).

3)若,求實數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:2a1+22a2+23a3+…+2nan=n(n∈N*),數(shù)列{ }的前n項和為Sn , 則S1S2S3…S10=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+(x﹣1)ex
(1)當a=﹣ 時,求f(x)在點P(1,f(1))處的切線方程;
(2)討論f(x)的單調(diào)性;
(3)當﹣ <a<﹣ 時,f(x)是否存在極值?若存在,求所有極值的和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)經(jīng)典名著,它在集合學(xué)中的研究比西方早1千年,在《九章算術(shù)》中,將四個面均為直角三角形的四面體稱為鱉臑,已知某“鱉臑”的三視圖如圖所示,則該鱉臑的外接球的表面積為(
A.200π
B.50π
C.100π
D. π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京時間3月10日,CBA半決賽開打,采用7局4勝制(若某對取勝四場,則終止本次比賽,并獲得進入決賽資格),采用2﹣3﹣2的賽程,遼寧男籃將與新疆男籃爭奪一個決賽名額,由于新疆隊常規(guī)賽占優(yōu),決賽時擁有主場優(yōu)勢(新疆先兩個主場,然后三個客場,再兩個主場),以下是總決賽賽程:

日期

比賽隊

主場

客場

比賽時間

比賽地點

17年3月10日

新疆﹣遼寧

新疆

遼寧

20:00

烏魯木齊

17年3月12日

新疆﹣遼寧

新疆

遼寧

20:00

烏魯木齊

17年3月15日

遼寧﹣新疆

遼寧

新疆

20:00

本溪

17年3月17日

遼寧﹣新疆

遼寧

新疆

20:00

本溪

17年3月19日

遼寧﹣新疆

遼寧

新疆

20:00

本溪

17年3月22日

新疆﹣遼寧

新疆

遼寧

20:00

烏魯木齊

17年3月24日

新疆﹣遼寧

新疆

遼寧

20:00

烏魯木齊


(1)若考慮主場優(yōu)勢,每個隊主場獲勝的概率均為 ,客場取勝的概率均為 ,求遼寧隊以比分4:1獲勝的概率;
(2)根據(jù)以往資料統(tǒng)計,每場比賽組織者可獲得門票收入50萬元(與主客場無關(guān)),若不考慮主客場因素,每個隊每場比賽獲勝的概率均為 ,設(shè)本次半決賽中(只考慮這兩支隊)組織者所獲得的門票收入為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=xlnx+ax,a∈R.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若對x>1,f(x)>(b+a﹣1)x﹣b恒成立,求整數(shù)b的最大值.

查看答案和解析>>

同步練習(xí)冊答案