【題目】太極圖是由黑白兩個(gè)魚形紋組成的圖案,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相互統(tǒng)一的和諧美.定義:能夠?qū)A的周長和面積同時(shí)等分成兩部分的函數(shù)稱為圓的一個(gè)“太極函數(shù)”.下列有關(guān)說法中正確的個(gè)數(shù)是( )個(gè)

①對圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);

②函數(shù)是圓的一個(gè)太極函數(shù);

③存在圓,使得是圓的太極函數(shù);

④直線所對應(yīng)的函數(shù)一定是圓的太極函數(shù).

A.B.C.D.

【答案】B

【解析】

利用“太極函數(shù)”的定義逐個(gè)判斷函數(shù)是否滿足新定義即可.

對于①,如下圖所示,若太極函數(shù)為偶函數(shù),該函數(shù)平分圓的周長和面積,①錯(cuò)誤;

對于②,函數(shù)的圖象是過圓圓心的一條直線,平分圓的周長和面積,②正確;

對于③,,定義域?yàn)?/span>,關(guān)于原點(diǎn)對稱.

,該函數(shù)為奇函數(shù).

當(dāng)時(shí),,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.

當(dāng)時(shí),,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.

函數(shù)的圖象關(guān)于原點(diǎn)對稱,有三條漸近線,.

可知函數(shù)的對稱中心為間斷點(diǎn),故不存在圓使得函數(shù)滿足題干條件,③錯(cuò)誤;

對于④,對于直線的方程,變形為,

,得,直線經(jīng)過圓的圓心,可以平分圓周長和面積,④正確.

因此,真命題的序號為②④.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓過點(diǎn)且與圓相切,設(shè)圓心的軌跡為曲線

(1)求曲線的方程;

(2)點(diǎn),為曲線上的兩點(diǎn)(不與點(diǎn)重合),記直線的斜率分別為,若,請判斷直線是否過定點(diǎn). 若過定點(diǎn),求該定點(diǎn)坐標(biāo),若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.

(1)求該拋物線的方程;

(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體中,,,、分別是、的中點(diǎn),則異面直線所成角的正弦值是( )

A. B. C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)若時(shí),求函數(shù)的最小值;

(2)若,證明:函數(shù)有且只有一個(gè)零點(diǎn);

(3)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P-ABCD,底面ABCD為菱形,且∠DAB=60°,△PAB是邊長為a的正三角形,且平面PAB⊥平面ABCD,已知點(diǎn)M是PD的中點(diǎn).

(1)證明:PB∥平面AMC;

(2)求直線BD與平面AMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

1)函數(shù)是否過定點(diǎn)?若是求出該定點(diǎn),若不是,說明理由.

2)將函數(shù)的圖象向下平移個(gè)單位,再向左平移個(gè)單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式;

3)在(2)的基礎(chǔ)上,若函數(shù)過點(diǎn),且設(shè)函數(shù)的定義域?yàn)?/span>,若在其定義域內(nèi),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后擲一顆質(zhì)地均勻的骰子(骰子的六個(gè)面上分別標(biāo)有1,2,3,4,5,6)兩次,落在水平桌面上后,記正面朝上的點(diǎn)數(shù)分別為,記事件為“為偶數(shù)”,事件為“中有偶數(shù)且”,則概率( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域?yàn)?/span>的函數(shù),若同時(shí)滿足下列條件:

內(nèi)單調(diào)遞增或單調(diào)遞減;

存在區(qū)間,使上的值域?yàn)?/span>;那么把叫閉函數(shù).

1求閉函數(shù)符合條件的區(qū)間;

2判斷函數(shù)是否為閉函數(shù)并說明理由;

3判斷函數(shù)是否為閉函數(shù)?若是閉函數(shù)求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊答案