設(shè)橢圓的離心率為,焦點(diǎn)在軸上且長軸長為,若曲線上的點(diǎn)到橢圓的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線的標(biāo)準(zhǔn)方程為

A.                                B.

C.                               D.

 

【答案】

A

【解析】

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過點(diǎn)P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過右焦點(diǎn)且與軸垂直的

直線與橢圓相交M、N兩點(diǎn),且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,

)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個(gè)焦分別為.過右焦點(diǎn)且與軸垂直的

直線與橢圓相交M、N兩點(diǎn),且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足

)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年安徽師大附中高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知橢圓C:的離心率為,且經(jīng)過點(diǎn)
(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年廣東省廣州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:的離心率為,且經(jīng)過點(diǎn)
(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案