【題目】已知函數(shù).
(1)試討論函數(shù)的極值點(diǎn)的個(gè)數(shù);
(2)若,且恒成立,求a的最大值.
參考數(shù)據(jù):
1.6 | 1.7 | 1.74 | 1.8 | 10 | |
4.953 | 5.474 | 5.697 | 6.050 | 22026 | |
0.470 | 0.531 | 0.554 | 0.588 | 2.303 |
【答案】(1)當(dāng)時(shí),沒有極值點(diǎn);時(shí),有唯一極大值點(diǎn),沒有極小值點(diǎn);(2)10.
【解析】
(1)根據(jù)函數(shù)解析式,求得導(dǎo)函數(shù),對(duì)分類討論即可由函數(shù)單調(diào)性確定極值點(diǎn).
(2)由(1)可知當(dāng)時(shí),有唯一極大值點(diǎn),由恒成立代入化簡(jiǎn)可知,根據(jù)零點(diǎn)存在定理可知,從而討論及討論,即可確定a的最大值,再代入檢驗(yàn).
(1)函數(shù),定義域?yàn)?/span>,
則,
當(dāng)時(shí),,在定義域單調(diào)遞減,沒有極值點(diǎn);
當(dāng)時(shí),在單調(diào)遞減且圖像連續(xù),
,時(shí),
∴存在唯一正數(shù),使得,
函數(shù)在單調(diào)遞增,在單調(diào)遞減,
∴函數(shù)有唯一極大值點(diǎn),沒有極小值點(diǎn),
綜上:當(dāng)時(shí),沒有極值點(diǎn);
當(dāng)時(shí),有唯一極大值點(diǎn),沒有極小值點(diǎn).
(2)由(1)知,當(dāng)時(shí),有唯一極大值點(diǎn),
∴,
由恒成立,
∵,∴,
∴
令,則在單調(diào)遞增,
由于,,
∴存在唯一正數(shù),使得,從而.
由于恒成立,
①當(dāng)時(shí),成立;
②當(dāng)時(shí),由于,
∴.
令,當(dāng)時(shí),,
∴在單調(diào)遞減,從而,
∵,且,且,
∴.
下面證明時(shí),.
,且在單調(diào)遞減,由于,,
∴存在唯一,使得,
∴.
令,易知在單調(diào)遞減,
∴,
∴,即時(shí),.
∴a的最大值是10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、是橢圓的左、右頂點(diǎn),為橢圓上異于、的一點(diǎn).
(1)是橢圓的上頂點(diǎn),且直線與直線垂直,求點(diǎn)到軸的距離;
(2)過點(diǎn)的直線(不過坐標(biāo)原點(diǎn))與橢圓交于、兩點(diǎn),且點(diǎn)在軸上方,點(diǎn)在軸下方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長(zhǎng)為,離心率為.
(1)求橢圓的方程;
(2)若動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),分別過兩點(diǎn)作,垂足分別為,且記為點(diǎn)到直線的距離, 為點(diǎn)到直線的距離,為點(diǎn)到點(diǎn)的距離,試探索是否存在最大值.若存在,求出最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為=(>0),過點(diǎn)的直線的參數(shù)方程為(t為參數(shù)),直線與曲線C相交于A,B兩點(diǎn).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線的參數(shù)方程為,(為參數(shù)).直線與曲線交于兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程.
(2)設(shè),若成等比數(shù)列,求和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,軸上方的點(diǎn)在拋物線上,且,直線與拋物線交于,兩點(diǎn)(點(diǎn),與不重合),設(shè)直線,的斜率分別為,.
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)時(shí),求證:直線恒過定點(diǎn)并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,軸上方的點(diǎn)在拋物線上,且,直線與拋物線交于,兩點(diǎn)(點(diǎn),與不重合),設(shè)直線,的斜率分別為,.
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)時(shí),求證:直線恒過定點(diǎn)并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某小區(qū)抽取50戶居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50到350度之間,將用電量的數(shù)據(jù)繪制成頻率分布直方圖如下.
(1)求頻率分布直方圖中的值并估計(jì)這50戶用戶的平均用電量;
(2)若將用電量在區(qū)間內(nèi)的用戶記為類用戶,標(biāo)記為低用電家庭,用電量在區(qū)間內(nèi)的用戶記為類用戶,標(biāo)記為高用電家庭,現(xiàn)對(duì)這兩類用戶進(jìn)行問卷調(diào)查,讓其對(duì)供電服務(wù)進(jìn)行打分,打分情況見莖葉圖:
①從類用戶中任意抽取3戶,求恰好有2戶打分超過85分的概率;
②若打分超過85分視為滿意,沒超過85分視為不滿意,請(qǐng)?zhí)顚懴旅媪新?lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“滿意度與用電量高低有關(guān)”?
滿意 | 不滿意 | 合計(jì) | |
類用戶 | |||
類用戶 | |||
合計(jì) |
附表及公式:
<>0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的不斷發(fā)展和人們消費(fèi)觀念的不斷提升,越來越多的人日益喜愛旅游觀光.某人想在2019年5月到某景區(qū)旅游觀光,為了避開旅游高峰擁擠,方便出行,他收集了最近5個(gè)月該景區(qū)的觀光人數(shù)數(shù)據(jù)見下表:
月份 | 2018.12 | 2019.1 | 2019.2 | 2019.3 | 2019.4 |
月份編號(hào) | 1 | 2 | 3 | 4 | 5 |
旅游觀光人數(shù)(百萬人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集數(shù)據(jù)的散點(diǎn)圖發(fā)現(xiàn),可用線性回歸模型擬合旅游觀光人數(shù)少(百萬人)與月份編號(hào)之間的相關(guān)關(guān)系,請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)2019年5月景區(qū)的旅游觀光人數(shù).
(2)當(dāng)?shù)芈糜尉譃榱祟A(yù)測(cè)景區(qū)給當(dāng)?shù)氐呢?cái)政帶來的收入狀況,從2019年4月的旅游觀光人群中隨機(jī)抽取了200人,并對(duì)他們旅游觀光過程中的開支情況進(jìn)行了調(diào)查,得到如下頻率分布表:
開支金額(千元) | |||||||
頻數(shù) | 10 | 30 | 40 | 60 | 30 | 20 | 10 |
若采用分層抽樣的方法從開支金額低于4千元的游客中抽取8人,再在這8人中抽取3人,記這3人中開支金額低于3千元的人數(shù)為,求的分布列和數(shù)學(xué)期望.
(參考公式:,其中,.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com