化簡;
(1)
1-sin2α
•tanα   
(2)(1+tan2α)cos2α
考點:同角三角函數(shù)基本關系的運用
專題:計算題,三角函數(shù)的求值
分析:利用同角三角函數(shù)基本關系,即可得出結論.
解答: 解:(1)
1-sin2α
•tanα=cosα•tanα=sinα;   
(2)(1+tan2α)cos2α=cos2α+sin2α=1.
點評:本題考查同角三角函數(shù)基本關系的運用,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
y≥x
x+y≥0
y≤1
,則z=x-2y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m是兩個正數(shù)2和8的等比中項,則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0≤α≤2π,點P(cosα,sinα)在曲線(x-2)2+y2=3上,則α的值為( 。
A、
π
3
B、
5
3
π
C、
π
3
5
3
π
D、
π
3
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知全集U=A∪B={x∈N|0≤x≤10},A∩(∁UB)={1,3,5,7},試求集合B.
(2)已知lg2=a,lg3=b,試用a,b表示log125.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

lim
k→0
f(x0-k)-f(x0)
k
=-1,則f′(x0)等于( 。
A、-1B、1C、0D、無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x+log2
x
9-x
,則f(1)+f(2)+f(3)+…+f(8)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設z=
1
1+i
+i,則|z|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD,底面ABCD是∠A=60°,邊長為a的菱形,又PD⊥底ABCD,且PD=CD,點M、N分別是棱AD、PC的中點.
(1)證明:DN∥平面PMB;
(2)證明:平面PMB⊥平面PAD;
(3)求直線PB與平面ABCD所成的角.

查看答案和解析>>

同步練習冊答案