(06年湖南卷理)(14分)
已知函數(shù), 數(shù)列滿足: ,
證明 (Ⅰ) ;
(Ⅱ) .
解析:證明: (I).先用數(shù)學(xué)歸納法證明,n=1,2,3,…
(i).當(dāng)n=1時(shí),由已知顯然結(jié)論成立.
(ii).假設(shè)當(dāng)n=k時(shí)結(jié)論成立,即.因?yàn)?
,所以f(x)在(0,1)上是增函數(shù). 又f(x)在[0,1]上連續(xù),
從而.故n=k+1時(shí),結(jié)論成立.
由(i)、(ii)可知,對一切正整數(shù)都成立.
又因?yàn)?IMG height=21 src='http://thumb.zyjl.cn/pic1/img/20090331/20090331203605005.gif' width=59>時(shí),,
所以,綜上所述.
(II).設(shè)函數(shù),.由(I)知,當(dāng)時(shí),,
從而
所以g (x)在(0,1)上是增函數(shù). 又g (x)在[0,1]上連續(xù),且g (0)=0,
所以當(dāng)時(shí),g (x)>0成立.于是.
故.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(06年湖南卷理)過平行六面體任意兩條棱的中點(diǎn)作直線, 其中與平面平行的直線共有
A.4條 B.6條 C.8條 D.12條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年湖南卷理)某外商計(jì)劃在4個(gè)候選城市投資3個(gè)不同的項(xiàng)目, 且在同一個(gè)城市投資的項(xiàng)目不超過2個(gè), 則該外商不同的投資方案有
A. 16種 B.36種 C.42種 D.60種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年湖南卷理)過雙曲線的左頂點(diǎn)作斜率為1的直線, 若與雙曲線的兩條漸近線分別相交于點(diǎn), 且, 則雙曲線的離心率是
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com