設(shè)函數(shù).
(1)若,對一切恒成立,求的最大值;
(2)設(shè),且、是曲線上任意兩點(diǎn),若對任意,直線的斜率恒大于常數(shù),求的取值范圍.
(1)的最大值為;(2)實(shí)數(shù)的取值范圍是.
解析試題分析:(1)當(dāng)時(shí),將不等式對一切恒成立等價(jià)轉(zhuǎn)化為來處理,利用導(dǎo)數(shù)求處函數(shù)的最小值,進(jìn)而建立有關(guān)參數(shù)的不等式進(jìn)行求解,以便確定的最大值;(2)先根據(jù)題意得到,假設(shè),得到,進(jìn)而得到
,并構(gòu)造新函數(shù),利用函數(shù)在上為單調(diào)遞增函數(shù)并結(jié)合基本不等式法求出的取值范圍.
試題解析:(1)當(dāng)時(shí),不等式對一切恒成立,則有,
,令,解得,列表如下:
故函數(shù)在處取得極小值,亦即最小值,即, 減 極小值 增
則有,解得,即的最大值是;
(2)由題意知,不妨設(shè),
則有,即,
令,則,這說明函數(shù)在上單調(diào)遞增,
且,所以在
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(I)求f(x)的單調(diào)區(qū)間及極值;
(II)若關(guān)于x的不等式恒成立,求實(shí)數(shù)a的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()
(1)若曲線在點(diǎn)處的切線平行于軸,求的值;
(2)當(dāng)時(shí),若直線與曲線在上有公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)判斷函數(shù)的奇偶性;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=+ax-lnx(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a≥2時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對任意及任意,∈[1,2],恒有成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍,并且判斷代數(shù)式的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com