【題目】在平面直角坐標系中,已知、分別為橢圓的左、右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于直線于點,線段的中垂線交于點.記點的軌跡為曲線.
(1)求曲線的方程,并說明是什么曲線;
(2)若直線與曲線交于兩點、,則在圓上是否存在兩點、,使得,?若存在,請求出的取值范圍;若不存在,請說明理由.
【答案】(1);是以為焦點,為準線的拋物線(2)存在;
【解析】
(1)根據(jù)題意可得,再根據(jù)拋物線的定義即可求出曲線的方程.
(2)將直線與曲線:聯(lián)立,由直線與曲線交于點,,,利用韋達定理可得,從而求出的中垂線方程,由,,可得的中垂線與圓交于兩點、,利用點到直線的距離公式使圓心到直線的距離小于半徑即可求解.
(1)由題意,得,則動點的軌跡是以為焦點,
為準線的拋物線,所以點的軌跡的方程為.
(2)由得.
由直線與曲線交于點,,
得,解得.
由韋達定理,得.
設(shè)的中點為,
則,,
即,
所以的中垂線方程為,即,
由,,得的中垂線與圓交于兩點、,
所以,解得.
由①和②,得.
綜上,當時,圓上存在兩點、,使得,.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)當時,是什么曲線?
(2)當時,求與的公共點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中學為研究學生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校200名高三學生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉的時間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;
鍛煉不達標 | 鍛煉達標 | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
并通過計算判斷,是否能在犯錯誤的概率不超過0.025的前提下認為“鍛煉達標”與性別有關(guān)?
(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出10人,進行體育鍛煉體會交流,
(i)求這10人中,男生、女生各有多少人?
(ii)從參加體會交流的10人中,隨機選出2人作重點發(fā)言,記這2人中女生的人數(shù)為,求的分布列和數(shù)學期望.
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,且長度單位相同.
(1)求圓的極坐標方程;
(2)若直線:(為參數(shù))被圓截得的弦長為2,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知斜率為1的直線交拋物線:()于,兩點,且弦中點的縱坐標為2.
(1)求拋物線的標準方程;
(2)記點,過點作兩條直線,分別交拋物線于,(,不同于點)兩點,且的平分線與軸垂直,求證:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的連續(xù)函數(shù)f(x)滿足f(x)=f(2﹣x),導函數(shù)為f′(x).當x>1時,2f(x)+(x﹣1)f′(x)>0,且f(﹣1),則不等式f(x)<6(x﹣1)﹣2的解集為( )
A.(﹣1,1)∪(1,4)B.(﹣1,1)∪(1,3)
C.(,1)∪(1,2)D.(,1)∪(1,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知無窮數(shù)列的前項中的最大項為,最小項為,設(shè).
(1)若,求數(shù)列的通項公式;
(2)若,求數(shù)列的前項和;
(3)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com