某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長后通過點(diǎn)的兩條直線段圍成.按設(shè)計(jì)要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時(shí),取得最大值?
(1)(2) ,
解析試題分析:(1) 解決應(yīng)用題問題首先要解決閱讀問題,具體說就是要會(huì)用數(shù)學(xué)式子正確表示數(shù)量關(guān)系,本題解題思路清晰,就是根據(jù)扇環(huán)面的周長列函數(shù)關(guān)系式,因?yàn)樯拳h(huán)面的周長為兩段弧長加兩段直線,利用弧長公式,得所以 ,(2) 本題解題思路清晰,就是根據(jù)花壇的面積與裝飾總費(fèi)用的比列函數(shù)關(guān)系式,再由導(dǎo)數(shù)或基本不等式求最值. 裝飾總費(fèi)用為直線部分的裝飾費(fèi)用與弧線部分的裝飾費(fèi)用之和,而花壇的面積為大扇形面積與小扇形面積之差,求最值時(shí)要注意定義域范圍的限制.
試題解析:(1)設(shè)扇環(huán)的圓心角為q,則,所以, 4分
(2) 花壇的面積為. 7分
裝飾總費(fèi)用為, 9分
所以花壇的面積與裝飾總費(fèi)用的, 12分
令,則,當(dāng)且僅當(dāng)t=18時(shí)取等號(hào),此時(shí).
答:當(dāng)時(shí),花壇的面積與裝飾總費(fèi)用的比最大. 15分
考點(diǎn):函數(shù)關(guān)系式,弧長公式,基本不等式求最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的零點(diǎn);
(2)若對(duì)任意b∈R,函數(shù)f(x)恒有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=.
(1)若f(x)>k的解集為{x|x<-3,或x>-2},求k的值;
(2)對(duì)任意x>0,f(x)≤t恒成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為加快旅游業(yè)的發(fā)展,新余市2013年面向國內(nèi)發(fā)行總量為200萬張的“仙女湖之旅”優(yōu)惠卡,向省外人士發(fā)行的是金卡,向省內(nèi)人士發(fā)行的是銀卡.某旅游公司組織了一個(gè)有36名游客的旅游團(tuán)到新余仙女湖旅游,其中是省外游客,其余是省內(nèi)游客.在省外游客中有持金卡,在省內(nèi)游客中有持銀卡.(1)在該團(tuán)中隨機(jī)采訪2名游客,求恰有1人持銀卡的概率;
(2)在該團(tuán)中隨機(jī)采訪2名游客,求其中持金卡與持銀卡人數(shù)相等概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司欲建連成片的網(wǎng)球場數(shù)座,用288萬元購買土地20000平方米,每座球場的建筑面積為1000平方米,球場每平方米的平均建筑費(fèi)用與所建的球場數(shù)有關(guān),當(dāng)該球場建n座時(shí),每平方米的平均建筑費(fèi)用表示,且(其中),又知建5座球場時(shí),每平方米的平均建筑費(fèi)用為400元.
(1)為了使該球場每平方米的綜合費(fèi)用最。ňC合費(fèi)用是建筑費(fèi)用與購地費(fèi)用之和),公司應(yīng)建幾座網(wǎng)球場?
(2)若球場每平方米的綜合費(fèi)用不超過820元,最多建幾座網(wǎng)球場?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
近日,國家經(jīng)貿(mào)委發(fā)出了關(guān)于深入開展增產(chǎn)節(jié)約運(yùn)動(dòng),大力增產(chǎn)市場適銷對(duì)路產(chǎn)品的通知,并發(fā)布了當(dāng)前國內(nèi)市場185種適銷工業(yè)品和42種滯銷產(chǎn)品的參考目錄。為此,一公司舉行某產(chǎn)品的促銷活動(dòng),經(jīng)測(cè)算該產(chǎn)品的銷售量P萬件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用x萬元滿足(其中,a為正常數(shù));已知生產(chǎn)該產(chǎn)品還需投入成本(10+2P)萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為萬元/萬件.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費(fèi)用x萬元的函數(shù);
(2)促銷費(fèi)用投入多少萬元時(shí),廠家的利潤是大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
有一塊邊長為4米的正方形鋼板,現(xiàn)對(duì)其進(jìn)行切割,焊接成一個(gè)長方體無蓋容器(切、焊損耗忽略不計(jì)),有人用數(shù)學(xué)知識(shí)作了如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)小正方形,剩余部分圍成長方體。
(Ⅰ)求這種切割、焊接而成的長方體的最大容積.
(Ⅱ)請(qǐng)問:能重新設(shè)計(jì),使所得長方體的容器的容積嗎?若能、給出你的一種設(shè)計(jì)方案。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=.
(1)若f(x)>k的解集為{x|x<-3,或x>-2},求k的值;
(2)對(duì)任意x>0,f(x)≤t恒成立,求t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com