16.一個圓錐被過頂點(diǎn)的平面截去了較少的一部分幾何體,余下的幾何體的三視圖如圖,則余下部分的幾何體的體積為( 。
A.$\frac{8π}{3}$+$\sqrt{15}$B.$\frac{16π}{3}$+$\sqrt{3}$C.$\frac{8π}{3}$+$\frac{2\sqrt{3}}{3}$D.$\frac{16π}{9}$+$\frac{2\sqrt{3}}{3}$

分析 由三視圖求出圓錐母線,高,底面半徑.進(jìn)而求出錐體的底面積,代入錐體體積公式,可得答案.

解答 解:由已知中的三視圖,圓錐母線l=$\sqrt{{\sqrt{5}}^{2}+(\frac{2\sqrt{3}}{2})^{2}}$=2$\sqrt{2}$,
圓錐的高h(yuǎn)=$\sqrt{{\sqrt{5}}^{2}-{1}^{2}}$=2,
圓錐底面半徑為r=$\sqrt{{l}^{2}-{h}^{2}}$=2,
截去的底面弧的圓心角為120°,
底面剩余部分為S=$\frac{2}{3}$πr2+$\frac{1}{2}$r2sin120°=$\frac{8}{3}$π+$\sqrt{3}$,
故幾何體的體積為:V=$\frac{1}{3}$Sh=$\frac{1}{3}$×($\frac{8}{3}$π+$\sqrt{3}$)×2=$\frac{16π}{9}$+$\frac{2\sqrt{3}}{3}$,
故選:D

點(diǎn)評 本題考查幾何體體積計(jì)算.本題關(guān)鍵是弄清幾何體的結(jié)構(gòu)特征,是易錯之處.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(a)=($\sqrt{\frac{1-sinα}{1+sinα}}$+$\sqrt{\frac{1+sinα}{1-sinα}}$)cos3α+2sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α)(α為第三象限角).
(Ⅰ)若tanα=3,求f(α)的值;
(Ⅱ)若f(α)=$\frac{14}{5}$cosα,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.${({\sqrt{2}x-\frac{1}{x^2}})^3}$的展開式中常數(shù)項(xiàng)為( 。
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.要得到函數(shù)$f(x)=sin2x+\sqrt{3}cos2x({x∈R})$的圖象,可將y=2sin2x的圖象向左平移(  )
A.$\frac{π}{6}$個單位B.$\frac{π}{3}$個單位C.$\frac{π}{4}$個單位D.$\frac{π}{12}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若$\frac{5π}{2}$≤α≤$\frac{7π}{2}$,則$\sqrt{1+sinα}$+$\sqrt{1-sinα}$=$\sqrt{2-cosα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給出以下命題:
①若cos<$\overrightarrow{MN}$,$\overrightarrow{PQ}$>=-$\frac{1}{3}$,則異面直線MN與PQ所成角的余弦值為-$\frac{1}{3}$;
②若平面α與β的法向量分別是$\overrightarrow a=(2,4,-3)$與$\overrightarrow b=(-1,2,2)$,則平面α⊥β;
③已知A、B、C三點(diǎn)不共線,點(diǎn)O為平面ABC外任意一點(diǎn),若點(diǎn)M滿足$\overrightarrow{OM}=\frac{1}{5}\overrightarrow{OA}+\frac{4}{5}\overrightarrow{OB}+\frac{2}{5}\overrightarrow{BC}$,則點(diǎn)M∈平面ABC;
④若向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是空間的一個基底,則向量$\overrightarrow a+\overrightarrow b+\overrightarrow c$、$\overrightarrow a+\overrightarrow b$、$\overrightarrow c$也是空間的一個基底;
則其中正確的命題個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一個焦點(diǎn)與拋物線y2=8x的焦點(diǎn)相同,且經(jīng)過點(diǎn)(2,3).
(Ⅰ)求雙曲線C的標(biāo)準(zhǔn)方程和其漸近線方程;
(Ⅱ)設(shè)直線l經(jīng)過點(diǎn)(0,-1),且斜率為k.求直線l與雙曲線C有兩個公共點(diǎn)時k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知直線x+ylog4a=0與直線2x-y-3=0平行,則a的值為( 。
A.$\frac{1}{2}$B.2C.4D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.我們知道:在平面內(nèi),點(diǎn)(x0,y0)到直線Ax+By+C=0的距離公式為$d=\frac{{|{A{x_0}+B{y_0}+C}|}}{{\sqrt{{A^2}+{B^2}}}}$,通過類比的方法,可求得:在空間中,點(diǎn)(2,4,1)到平面x+2y+2z+3=0的距離為5.

查看答案和解析>>

同步練習(xí)冊答案