【題目】(選修4-4 坐標(biāo)系與參數(shù)方程) 以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)曲線C的參數(shù)方程為 (是參數(shù)),直線的極坐標(biāo)方程為.

1)求直線的直角坐標(biāo)方程和曲線C的普通方程;

2)設(shè)點(diǎn)P為曲線C上任意一點(diǎn),求點(diǎn)P到直線的距離的最大值.

【答案】(1);(2).

【解析】試題分析:(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式把直線l的極坐標(biāo)方程化為直角坐標(biāo)方程.利用同角三角函數(shù)的基本關(guān)系消去α,把曲線C的參數(shù)方程化為直角坐標(biāo)方程.
(2)設(shè)點(diǎn)P(2cosα, sinα),求得點(diǎn)P到直線l的距離,,由此求得d的最大值.

試題解析:(1)∵直線l的極坐標(biāo)方程為,

.

曲線C的參數(shù)方程為 (α是參數(shù)),利用同角三角函數(shù)的基本關(guān)系消去α,

可得.

(2)設(shè)點(diǎn)P(2cosα, sinα)為曲線C上任意一點(diǎn),

則點(diǎn)P到直線l的距離

故當(dāng)cos(α+β)=1時(shí),d取得最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知a﹣c= b,sinB= sinC.
(1)求cosA的值;
(2)求cos(A+ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1 +y2=1,橢圓C2以C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上, ,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,則異面直線AD1與A1C1所成角的余弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)與函數(shù)在點(diǎn)處有共同的切線,求的值;

(2)證明:

(3)若不等式對(duì)所有, 都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某公路 一側(cè)有一塊空地 ,其中 .當(dāng)?shù)卣當(dāng)M在中間開挖一個(gè)人工湖△OMN,其中MN都在邊AB上(M,N不與AB重合,MA,N之間),且MON=30°.

(1)若M在距離A點(diǎn)2 km處,求點(diǎn)M,N之間的距離;

(2)為節(jié)省投入資金,人工湖△OMN的面積要盡可能。嚧_定M的位置,使△OMN的面積最小,并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)的零點(diǎn)與g(x)=4x+2x﹣2的零點(diǎn)之差的絕對(duì)值不超過0.25,則f(x)可以是(
A.f(x)=4x﹣1
B.f(x)=(x﹣1)2
C.f(x)=ex﹣1
D.f(x)=ln(x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,經(jīng)過點(diǎn) 且斜率為k的直線l與橢圓 有兩個(gè)不同的交點(diǎn)P和Q.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)橢圓與x軸正半軸、y軸正半軸的交點(diǎn)分別為A,B,是否存在常數(shù)k,使得向量 共線?如果存在,求k值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定義A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

同步練習(xí)冊(cè)答案