已知
(1)當時,求的最大值;
(2)求證:恒成立;
(3)求證:.(參考數(shù)據(jù):

(1)的最大值為0;(2)詳見解析;(3)詳見解析.

解析試題分析:(1)設,求導利用單調性即可得其最大值;.
(2)由(1)得,,變形即得左邊的不等式:.右邊不等式顯然不宜直接作差,故考慮作適當?shù)淖冃?為了證右邊,設.求導得.的符號還不能直接確定.為了確定的符號,再設,求導得,所以由此可知,從而原命題得證;(3)首先看看所證不等式與第(2)題有何聯(lián)系.對照待證不等式,可將(2)題中的不等式變形為:.顯然取,得.右邊易證如下:;左邊則應考慮做縮小變形.由于左邊為,故將縮為一個等差數(shù)列.因為,所以考慮把縮小為.
時,,這樣累加,再用等差數(shù)列的求和公式即可使問題得證.
試題解析:(1)設,則
,
所以在區(qū)間內單調遞減,故的最大值為;  (4分)
(2)由(1)得,對,都有,即,
因為,所以.                          (6分)
,則
.
,則,
所以在區(qū)間內單調遞增,故.
所以在區(qū)間內單調遞增,故
因為,所以.
從而原命題得證.                           (9分)
(3)由(2)得,,
,得.
所以;  (11分)
另一方面,當時,
所以
從而命題得證.                             (14分)
考點:1、導數(shù)及其應用;2、不等式的證明.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,半徑為30的圓形(為圓心)鐵皮上截取一塊矩形材料,其中點在圓弧上,點在兩半徑上,現(xiàn)將此矩形材料卷成一個以為母線的圓柱形罐子的側面(不計剪裁和拼接損耗),設與矩形材料的邊的夾角為,圓柱的體積為.

(1)求關于的函數(shù)關系式?
(2)求圓柱形罐子體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現(xiàn)要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設,木梁的體積為V(單位:m3),表面積為S(單位:m2).

(1)求V關于θ的函數(shù)表達式;
(2)求的值,使體積V最大;
(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)若函數(shù)在區(qū)間(-2,0)內恰有兩個零點,求a的取值范圍;
(2)當a=1時,求函數(shù)在區(qū)間[t,t+3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知處取得極值,且在點處的切線斜率為.
⑴求的單調增區(qū)間;
⑵若關于的方程在區(qū)間上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),.
(1)若,求的單調遞增區(qū)間;
(2)若曲線軸相切于異于原點的一點,且的極小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的極值;
(2)設函數(shù)若函數(shù)上恰有兩個不同零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)(其中),,已知它們在處有相同的切線.
(1)求函數(shù),的解析式;
(2)求函數(shù)上的最小值;
(3)若對恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在點(1,g(1))處的切線方程為2y-1=0.
(1)求g(x)的解析式;
(2)設函數(shù)G(x)=若方程G(x)=a2有且僅有四個解,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案