19.六個人從左到右排成一行,最右端只能排甲或乙,最左端不能排乙,則不同的排法種數(shù)共有( 。
A.192B.216C.240D.288

分析 分類討論,最右端排乙;最右端排甲,最左端不能排乙,根據(jù)加法原理可得結(jié)論.

解答 解:最右端排乙,共有A55=120種,最右端排甲,最左端不能排乙,有C41A44=96種,
根據(jù)加法原理可得,共有120+96=216種.
故選:B.

點評 本題考查排列、組合及簡單計數(shù)問題,考查學(xué)生的計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等差數(shù)列{an}中,a2、a8是函數(shù)f(x)=3x2-2x-1的零點,則log3a5的值為( 。
A.-4B.-2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從集合S={1,2,3,4,5,6}中取3個元素按從小到大排列,這樣的排列共有( 。
A.P${\;}_{6}^{3}$個B.C${\;}_{6}^{3}$個C.$\frac{1}{2}$P${\;}_{6}^{3}$個D.$\frac{1}{2}$C${\;}_{6}^{3}$個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.與30°角終邊相同的角α=30°+k×360°,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=$\frac{{\sqrt{2}cos({x-\frac{π}{4}})+6{x^2}+x}}{{6{x^2}+cosx}}$的最大值為M,最小值為m,則M與m滿足的關(guān)系是( 。
A.M-m=2B.M+m=2C.M-m=4D.M+m=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某大型企業(yè)招聘會的現(xiàn)場,所有應(yīng)聘者的初次面試都由張、王、李三位專家投票決定是否進(jìn)入下一輪測試,張、王、李三位專家都有“通過”、“待定”、“淘汰”三類票各一張,每個應(yīng)聘者面試時,張、王、李三位專家必須且只能投一張票,每人投三類票中的任意一類的概率均為$\frac{1}{3}$,且三人投票相互沒有影響,若投票結(jié)果中至少有兩張“通過”票,則該應(yīng)聘者初次面試獲得“通過”,否則該應(yīng)聘者不能獲得“通過”.
(1)求應(yīng)聘者甲的投票結(jié)果獲得“通過”的概率;
(2)記應(yīng)聘者乙的投票結(jié)果所含“通過”和“待定”票的票數(shù)之和為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.從長度為2,3,4,5的四條線段中隨機(jī)地選取三條線段,則所選取的三條線段恰能構(gòu)成三角形的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在50張獎券中,有3張中獎券,現(xiàn)從中任抽2張,至少有1張中獎的概率為( 。
A.$\frac{{C}_{3}^{2}}{{C}_{50}^{2}}$B.$\frac{{C}_{3}^{1}{C}_{47}^{1}}{{C}_{50}^{2}}$C.$\frac{{C}_{47}^{2}}{{C}_{50}^{2}}$D.1-$\frac{{C}_{47}^{2}}{{C}_{50}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)A={x|x=n,n∈Z},B={x|x=$\frac{n}{2}$,n∈Z},C={x|x=n+$\frac{1}{2}$,n∈Z},那么正確的(  )
A.A=BB.B=A∪CC.B=A∩CD.B⊆C

查看答案和解析>>

同步練習(xí)冊答案