利用導(dǎo)數(shù)的定義求函數(shù)y=
1
x
在x=1處的導(dǎo)數(shù).
考點:導(dǎo)數(shù)的運算
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用冪函數(shù)的導(dǎo)數(shù)運算法則即可得出.
解答: 解:y′=(x-
1
2
)
=-
x
2x2
,
當x=1時,y′(1)=-
1
2
點評:本題考查了冪函數(shù)的導(dǎo)數(shù)運算法則,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖所示,PA⊥平面ABC,點C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點E為線段PB的中點,點M在弧AB上,且OM∥AC.
(1)求證:平面MOE∥平面PAC;
(2)求證:平面PAC⊥平面PCB;
(3)求三棱錐O-PBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某林管部門在每年植樹節(jié)前,為保證樹苗的質(zhì)量,都會對樹苗進行檢測.現(xiàn)從甲、乙兩種樹苗中各抽取10株,測量其高度,所得數(shù)據(jù)如莖葉圖所示,則下列描述正確的是(  )
A、甲樹苗的平均高度大于乙樹苗的平均高度,且甲樹苗比乙樹苗長得整齊
B、甲樹苗的平均高度大于乙樹苗的平均高度,但乙樹苗比甲樹苗長得整齊
C、乙樹苗的平均高度大于甲樹苗的平均高度,但甲樹苗比乙樹苗長得整齊
D、乙樹苗的平均高度大于甲樹苗的平均高度,且乙樹苗比甲樹苗長得整齊

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)=a1x+a2x2+a3x3+…+anxn,(n∈N*),并且對于任意的n∈N*函數(shù)y=f(x)的圖象恒經(jīng)過點(1,n2),
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求f(-1)(用n表示)
(Ⅲ)求證:若n≥2(n∈N*),則有
5
4
≤f(
1
2
)<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面四個推導(dǎo)過程符合演繹推理三段論形式且推理正確的是( 。
A、大前提:無限不循環(huán)小數(shù)是無理數(shù);小前提:π丌是無理數(shù);結(jié)論:π是無限不循環(huán)小數(shù)
B、大前提:無限不循環(huán)小數(shù)是無理數(shù);小前提:π是無限不循環(huán)小數(shù);結(jié)論:π是無理數(shù)
C、大前提:π是無限不循環(huán)小數(shù);小前提:無限不循環(huán)小數(shù)是無理數(shù);結(jié)論:π是無理數(shù)
D、大前提:π是無限不循環(huán)小數(shù);小前提:π是無理數(shù);結(jié)論:無限不循環(huán)小數(shù)是無理數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面有三個命題:
①關(guān)于x的方程mx2+mx+1=0(m∈R)的解集恰有一個元素的充要條件是m=0或m=4;
②?m∈R,使函數(shù)f(x)=mx2+x是奇函數(shù);
③命題“x,y是實數(shù),若x+y≠2,則x≠1或y≠1”是真命題.
其中,真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an},{bn} 均為等差數(shù)列,前n項和分別為Sn,Tn
(1)若平面內(nèi)三個不共線向量
OA
,
OB
,
OC
滿足
OC
=a3
OA
+a15
OB
,且A,B,C三點共線.是否存在正整數(shù)n,使Sn為定值?若存在,請求出此定值;若不存在,請說明理由;
(2)若對 n∈N+,有 
Sn
Tn
=
31n+101
n+3
,求使 
an
bn
為整數(shù)的正整數(shù)n的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

與向量
a
=(
7
2
1
2
)及
b
=(
1
2
,-
7
2
)的夾角相等的單位向量是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知AB∥PQ,BC∥QR,∠ABC=60°,則∠PQR等于(  )
A、60°
B、60°或120°
C、120°
D、以上結(jié)論都不對

查看答案和解析>>

同步練習冊答案