【題目】已知曲線的方程為:,其中:,且為常數(shù).
(1)判斷曲線的形狀,并說明理由;
(2)設曲線分別與軸,軸交于點(不同于坐標原點),試判斷的面積是否為定值?并證明你的判斷;
(3)設直線與曲線交于不同的兩點,且為坐標原點),求曲線的方程.
【答案】(1)曲線是以點為圓心, 以為半徑的圓;(2)定值,證明見解析;(3).
【解析】
試題分析:(1)將曲線的方程化為,即可得到曲線的形狀;(2)在曲線的方程中令,得,進而得到點,計算的三角形的面積,即可判定面積為定值;(3)由圓過坐標原點,且,求得,當時,直線與圓相離,舍去,當時,即可求解圓的方程.
試題解析:(1)將曲線的方程化為,即.
可知曲線是以點為圓心, 以為半徑的圓.
(2)的面積為定值.證明如下:在曲線的方程中令,得,
得點在曲線方程中令,得,得點,( 定值).
(3)圓過坐標原點,且,
當時, 圓心坐標為圓的半徑為,
圓心到直線的距離,
直線與圓相離,不合題意舍去,時符合題意.
這時曲線的方程為.
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn,且首項a1≠3,an+1=Sn+3n(n∈N*).
(1)求證:數(shù)列{Sn-3n}是等比數(shù)列;
(2)若{an}為遞增數(shù)列,求a1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有一個質(zhì)地均勻的正四面體骰子,每個面上分別標有數(shù)字1、2、3、4,將這個骰子連續(xù)投擲兩次,朝下一面的數(shù)字分別記為,試計算下列事件的概率:
(1)事件;
(2)事件:函數(shù)在區(qū)間上為增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,曲線的參數(shù)方程為(為參數(shù)).
(1)直線過且與曲線相切,求直線的極坐標方程;
(2)點與點關于軸對稱,求曲線 上的點到點的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù),),且數(shù)列是首項為2,公差為2的等差數(shù)列.
(1)若,當時,求數(shù)列的前項和;
(2)設,如果中的每一項恒小于它后面的項,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面是矩形,,,,且.
(1)求證:平面平面;
(2)設是的中點,判斷并證明在線段上是否存在點,使平面,若存在,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中為實數(shù).
(1)是否存在,使得?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由;
(2)若集合中恰有5個元素,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com