【題目】如圖,四邊形ABCD與BDEF均為菱形,設AC與BD相交于點O,若∠DAB=∠DBF=60°,且FA=FC.
(1)求證:FC∥平面EAD;
(2)求直線AF與平面BCF所成角的余弦值.
【答案】
(1)證明:∵四邊形ABCD與BDEF均為菱形,
∴AD∥BC,DE∥BF.
∵AD平面FBC,DE平面FBC,BC平面FBC,BF平面FBC,
∴AD∥平面FBC,DE∥平面FBC,
又AD∩DE=D,AD平面EAD,DE平面EAD,
∴平面FBC∥平面EAD,
又FC平面FBC,∴FC∥平面EAD.
(2)解:連接FO、FD,∵四邊形BDEF為菱形,且∠DBF=60°,
∴△DBF為等邊三角形,
∵O為BD中點,∴FO⊥BD,
又∵O為AC中點,且FA=FC,∴AC⊥FO,
又AC∩BD=O,∴FO⊥平面ABCD.
由OA,OB,OF兩兩垂直,建立如圖所示的空間直角坐標系O﹣xyz
設AB=2,因為四邊形ABCD為菱形,∠DAB=60°,則BD=2,OB=1,OA=OF= ,
∴O(0,0,0),A( ,0,0),B(0,1,0),C(﹣ ,0,0),F(xiàn)(0,0, ),
=( ), =( ), =(﹣ ,0, ),
設平面BCF的一個法向量 =(x,y,z),
則 ,取x=1,得 =(1,﹣ ,﹣1),
設直線AF與平面BCF所成角為θ,
則sinθ= = = ,
∴cosθ= = ,
∴直線AF與平面BCF所成角的余弦值為 .
【解析】(1)由已知得AD∥平面FBC,DE∥平面FBC,從而平面FBC∥平面EAD,由此能證明FC∥平面EAD.(2)連接FO、FD,由OA,OB,OF兩兩垂直,建立空間直角坐標系O﹣xyz,利用向量法能求出直線AF與平面BCF所成角的余弦值.
【考點精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對空間角的異面直線所成的角的理解,了解已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則.
科目:高中數(shù)學 來源: 題型:
【題目】若圓的一條直徑的兩個端點分別是(﹣1,3)和(5,﹣5),則此圓的方程是( )
A.x2+y2+4x+2y﹣20=0
B.x2+y2﹣4x﹣2y﹣20=0
C.x2+y2﹣4x+2y+20=0
D.x2+y2﹣4x+2y﹣20=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1=AB=1,AD=2,E為BC的中點,點M,N分別為棱DD1 , A1D1的中點.
(1)求證:平面CMN∥平面A1DE;
(2)求證:平面A1DE⊥平面A1AE.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線y2=2px(p>0)與直線y=x+1相切,A(x1 , y1),B(x2 , y2)(x1≠x2)是拋物線上兩個動點,F(xiàn)為拋物線的焦點,且|AF|+|BF|=8.
(1)求p的值;
(2)線段AB的垂直平分線l與x軸的交點是否為定點,若是,求出交點坐標,若不是,說明理由;
(3)求直線l的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:“x∈{x|﹣1≤x≤1},都有不等式x2﹣x﹣m<0成立”是真命題.
(1)求實數(shù)m的取值集合B;
(2)設不等式(x﹣3a)(x﹣a﹣2)<0的解集為A,若x∈A是x∈B的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】要得到函數(shù)y=3sin(2x+ )圖象,只需把函數(shù)y=3sin2x圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com