精英家教網 > 高中數學 > 題目詳情

【題目】下表提供了某廠節(jié)能降耗技術改造后生產甲產品過程中記錄的產量x(噸)與相應的生產能耗y(噸標準煤)的幾組對照數據.

x

3

4

5

6

y

2.5

3

4

4.5

(參考數值:3×2.5+4×3+5×4+6×4.5=66.5)
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程 ;
(3)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(2)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤.

【答案】
(1)解:所求散點圖如圖所示:

(2)解: 3×2.5+4×3+5×4+6×4.5=66.5,
,
,

,
故所求線性回歸方程為 =0.7x+0.35
(3)解:根據回歸方程的預測,現在生產100噸產品消耗標準煤0.7×100+0.35=70.35噸,故耗能降低了90-70.35=19.65噸標準煤
【解析】(1)通過題目給的數據可以作出散點圖。
(2)通過已知條件,由回歸直線方程計算公式可以解出線性回歸方程。
(3)由線性回歸方程可以將100代入方程,解出可得。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】己知(2x﹣ 5(Ⅰ)求展開式中含 項的系數
(Ⅱ)設(2x﹣ 5的展開式中前三項的二項式系數之和為M,(1+ax)6的展開式中各項系數之和為N,若4M=N,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知O是邊長為 的正方形ABCD的中心,點E、F分別是AD、BC的中點,沿對角線AC把正方形ABCD折成直二面角D﹣AC﹣B; (Ⅰ)求∠EOF的大;
(Ⅱ)求二面角E﹣OF﹣A的余弦值;
(Ⅲ)求點D到面EOF的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐 中,平面 平面 , 為等邊三角形, , 分別為 的中點.

(1)求證: 平面 .
(2)求證:平面 平面 .
(3)求三棱錐 的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某冷飲店為了解氣溫變化對其營業(yè)額的影響,隨機記錄了該店1月份銷售淡季中5天的日營業(yè)額y(單位:百元)與該地當日最低氣溫x(單位:℃)的數據,如下表所示:

x

3

6

7

9

10

y

12

10

8

8

7

(Ⅰ)判定y與x之間是正相關還是負相關,并求回歸方程 = x+
(Ⅱ)若該地1月份某天的最低氣溫為6℃,預測該店當日的營業(yè)額
(參考公式: = = , = ).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F分別為BC,CD的中點,以A為圓心,AD為半徑的圓交AB于G,點P在 上運動(如圖).若 ,其中λ,μ∈R,則6λ+μ的取值范圍是(
A.[1, ]
B.[ ,2 ]
C.[2,2 ]
D.[1,2 ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,四邊形ABCD是一個梯形,CDAB , CDBO=1,△AOD為等腰直角三角形,OAB的中點,試求梯形ABCD水平放置的直觀圖的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設命題p:x0∈(0,+∞),3 +x0=2016,命題q:a∈(0,+∞),f(x)=|x|﹣ax,(x∈R)為偶函數,那么,下列命題為真命題的是(
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ax3﹣x2+x在區(qū)間(0,2)上是單調增函數,則實數a的取值范圍為

查看答案和解析>>

同步練習冊答案