【題目】若函數(shù)y=fx)對定義域的每一個值x1,在其定義域均存在唯一的x2,滿足fx1fx2)=1,則稱該函數(shù)為“依賴函數(shù)”.

1)判斷,y=2x是否為“依賴函數(shù)”;

2)若函數(shù)y=a+sinxa1), 為依賴函數(shù),求a的值,并給出證明.

【答案】1不是,y=2x是(2 ,證明見解析

【解析】

1)根據(jù)依賴函數(shù)的定義進行判斷即可,

2)只需要函數(shù)y=a+sinx的最大值和最小值滿足fx1fx2=1即可,建立方程關(guān)系進行求解即可.

1)解:(1)函數(shù),由fx1fx2=1,得,

對應(yīng)的x1、x2不唯一,所以不是依賴函數(shù);

對于函數(shù)y=2x,由fx1fx2=1,得

所以x2=x1,可得定義域內(nèi)的每一個值x1,都存在唯一的值x2滿足條件,故函數(shù)y=2x依賴函數(shù)

2)當時,函數(shù)y=a+sinxa1)為增函數(shù),且函數(shù)關(guān)于(0,a)對稱,

若函數(shù)y=a+sinxa1),為依賴函數(shù),

則只需要函數(shù)的最大值和最小值滿足fx1fx2=1即可,

則函數(shù)的最大值為a+1,最小值為a1,

則由(a+1)(a1=1a21=1,

a2=2,因為a1,所以得a=

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)已知函數(shù)時總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給正有理數(shù)、,,且不同時成立),按以下規(guī)則排列:① ,則排在前面;② ,且,則排在的前面,按此規(guī)則排列得到數(shù)列.

(例如:.

1)依次寫出數(shù)列的前10項;

2)對數(shù)列中小于1的各項,按以下規(guī)則排列:①各項不做化簡運算;②分母小的項排在前面;③分母相同的兩項,分子小的項排在前面,得到數(shù)列,求數(shù)列的前10項的和,前2019項的和

3)對數(shù)列中所有整數(shù)項,由小到大取前2019個互不相等的整數(shù)項構(gòu)成集合的子集滿足:對任意的,有,求集合中元素個數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)證明:當時,函數(shù)在區(qū)間上單調(diào)遞增;

2)若時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與拋物線交于,兩點,且的面積為16(為坐標原點).

(1)求的方程.

(2)直線經(jīng)過的焦點不與軸垂直,交于,兩點,若線段的垂直平分線與軸交于點,試問在軸上是否存在點,使為定值?若存在,求該定值及的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)擁有3條相同的生產(chǎn)線,每條生產(chǎn)線每月至多出現(xiàn)一次故障.各條生產(chǎn)線是否出現(xiàn)故障相互獨立,且出現(xiàn)故障的概率為.

1)求該企業(yè)每月有且只有1條生產(chǎn)線出現(xiàn)故障的概率;

2)為提高生產(chǎn)效益,該企業(yè)決定招聘名維修工人及時對出現(xiàn)故障的生產(chǎn)線進行維修.已知每名維修工人每月只有及時維修1條生產(chǎn)線的能力,且每月固定工資為1萬元.此外,統(tǒng)計表明,每月在不出故障的情況下,每條生產(chǎn)線創(chuàng)造12萬元的利潤;如果出現(xiàn)故障能及時維修,每條生產(chǎn)線創(chuàng)造8萬元的利潤;如果出現(xiàn)故障不能及時維修,該生產(chǎn)線將不創(chuàng)造利潤,以該企業(yè)每月實際獲利的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個?(實際獲利=生產(chǎn)線創(chuàng)造利潤-維修工人工資)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=A cos(ωxφ)(A>0,ω>0)的部分圖象如圖所示,下面結(jié)論錯誤的是(  )

A. 函數(shù)f(x)的最小正周期為

B. 函數(shù)f(x)的圖象可由g(x)=Acos ωx的圖象向右平移個單位長度得到

C. 函數(shù)f(x)的圖象關(guān)于直線x對稱

D. 函數(shù)f(x)在區(qū)間上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為實數(shù),函數(shù),且函數(shù)是偶函數(shù),函數(shù)在區(qū)間上的減函數(shù),且在區(qū)間上是增函數(shù).

1)求函數(shù)的解析式;

2)求實數(shù)的值;

3)設(shè),問是否存在實數(shù),使得在區(qū)間上有最小值為?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案